Show simple item record

Improving Image Reconstruction for Digital Breast Tomosynthesis

dc.contributor.authorZheng, Jiabei
dc.date.accessioned2018-06-07T17:47:01Z
dc.date.availableNO_RESTRICTION
dc.date.available2018-06-07T17:47:01Z
dc.date.issued2017
dc.date.submitted2017
dc.identifier.urihttps://hdl.handle.net/2027.42/144059
dc.description.abstractDigital breast tomosynthesis (DBT) has been developed to reduce the issue of overlapping tissue in conventional 2-D mammography for breast cancer screening and diagnosis. In the DBT procedure, the patient’s breast is compressed with a paddle and a sequence of x-ray projections is taken within a small angular range. Tomographic reconstruction algorithms are then applied to these projections, generating tomosynthesized image slices of the breast, such that radiologists can read the breast slice by slice. Studies have shown that DBT can reduce both false-negative diagnoses of breast cancer and false-positive recalls compared to mammography alone. This dissertation focuses on improving image quality for DBT reconstruction. Chapter I briefly introduces the concept of DBT and the inspiration of my study. Chapter II covers the background of my research including the concept of image reconstruction, the geometry of our experimental DBT system and figures of merit for image quality. Chapter III introduces our study of the segmented separable footprint (SG) projector. By taking into account the finite size of detector element, the SG projector improves the accuracy of forward projections in iterative image reconstruction. Due to the more efficient access to memory, the SG projector is also faster than the traditional ray-tracing (RT) projector. We applied the SG projector to regular and subpixel reconstructions and demonstrated its effectiveness. Chapter IV introduces a new DBT reconstruction method with detector blur and correlated noise modeling, called the SQS-DBCN algorithm. The SQS-DBCN algorithm is able to significantly enhance microcalcifications (MC) in DBT while preserving the appearance of the soft tissue and mass margin. Comparisons between the SQS-DBCN algorithm and several modified versions of the SQS-DBCN algorithm indicate the importance of modeling different components of the system physics at the same time. Chapter V investigates truncated projection artifact (TPA) removal algorithms. Among the three algorithms we proposed, the pre-reconstruction-based projection view (PV) extrapolation method provides the best performance. Possible improvements of the other two TPA removal algorithms have been discussed. Chapter VI of this dissertation examines the effect of source blur on DBT reconstruction. Our analytical calculation demonstrates that the point spread function (PSF) of source blur is highly shift-variant. We used CatSim to simulate digital phantoms. Analysis on the reconstructed images demonstrates that a typical finite-sized focal spot (~ 0.3 mm) will not affect the image quality if the x-ray tube is stationary during the data acquisition. For DBT systems with continuous-motion data acquisition, the motion of the x-ray tube is the main cause of the effective source blur and will cause loss in the contrast of objects. Therefore modeling the source blur for these DBT systems could potentially improve the reconstructed image quality. The final chapter of this dissertation discusses a few future studies that are inspired by my PhD research.
dc.language.isoen_US
dc.subjectdigital breast tomosynthesis
dc.subjecttomographic reconstruction
dc.subjectiterative image reconstruction
dc.subjectimage quality
dc.subjectcomputational modeling
dc.titleImproving Image Reconstruction for Digital Breast Tomosynthesis
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systems
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberChan, Heang-Ping
dc.contributor.committeememberFessler, Jeffrey A
dc.contributor.committeememberGoodsitt, Mitchell M
dc.contributor.committeememberScott, Clayton D
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144059/1/jiabei_1.pdf
dc.identifier.orcid0000-0002-4755-4655
dc.identifier.name-orcidZheng, Jiabei; 0000-0002-4755-4655en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.