Show simple item record

Effects of Psidium guajava leaf extract on secretion systems of gram‐negative enteropathogenic bacteria

dc.contributor.authorNakasone, Noboru
dc.contributor.authorOgura, Yasunori
dc.contributor.authorHiga, Naomi
dc.contributor.authorToma, Claudia
dc.contributor.authorKoizumi, Yukiko
dc.contributor.authorTakaesu, Giichi
dc.contributor.authorSuzuki, Toshihiko
dc.contributor.authorYamashiro, Tetsu
dc.date.accessioned2018-08-13T18:49:04Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationNakasone, Noboru; Ogura, Yasunori; Higa, Naomi; Toma, Claudia; Koizumi, Yukiko; Takaesu, Giichi; Suzuki, Toshihiko; Yamashiro, Tetsu (2018). "Effects of Psidium guajava leaf extract on secretion systems of gram‐negative enteropathogenic bacteria." Microbiology and Immunology 62(7): 444-453.
dc.identifier.issn0385-5600
dc.identifier.issn1348-0421
dc.identifier.urihttps://hdl.handle.net/2027.42/145239
dc.description.abstractIn this study, 672 plant‐tissue extracts were screened for phytochemicals that inhibit the function of the type III secretion system (T3SS) of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among candidates examined, an extract from the leaves of Psidium guajava (guava) was found to inhibit secretion of EPEC‐secreted protein B (EspB) from EPEC and EHEC without affecting bacterial growth. Guava extract (GE) also inhibited EPEC and EHEC from adhering to, and injecting EspB into, HEp‐2 cells. GE seemed to block translocation of EspB from the bacterial cells to the culture medium. In addition, GE also inhibited the T3SS of Yersinia pseudotuberculosis and Salmonella enterica serovar Typhimurium. After exposure to GE, Y. pseudotuberculosis stopped secreting Yersinia outer proteins and was unable to induce apoptosis of mouse bone marrow‐derived macrophages. S. typhimurium exposed to GE stopped secreting Sip proteins and was unable to invade HEp‐2 cells. GE inhibited secretion of EspC, the type V secretion protein of EPEC, but not secretion of Shiga toxin 2 from EHEC. Thus, our results suggest that guava leaves contain a novel type of antimicrobial compound that could be used to treat and prevent gram‐negative enteropathogenic bacterial infections.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPsidium guajava
dc.subject.othertype III secretion system
dc.subject.otherleaf extract
dc.titleEffects of Psidium guajava leaf extract on secretion systems of gram‐negative enteropathogenic bacteria
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145239/1/mim12604.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145239/2/mim12604_am.pdf
dc.identifier.doi10.1111/1348-0421.12604
dc.identifier.sourceMicrobiology and Immunology
dc.identifier.citedreferenceDignam J.D., Lebovitz R.M., Roeder R.G. ( 1983 ) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475 – 89.
dc.identifier.citedreferenceKumar A., Shukla R., Singh P., Prasad C.S., Dubey N.K. ( 2008 ) Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innov Food Sci Emerg Technol 9: 575 – 80.
dc.identifier.citedreferenceGebauer J., Kudlackova H., Kosina M., Kovarcik K., Tesarik R., Osvaldova A., Faldyna M., Matiasovic J. ( 2016 ) A proteomic approach to the development of DIVA ELISA distinguishing pigs infected with Salmonella Typhimurium and pigs vaccinated with a Salmonella Typhimurium‐based inactivated vaccine. BMC Vet Res 12: 252.
dc.identifier.citedreferenceDrargo‐Serrano M.E., Parra S.G., Manjarrez‐Hernández H.A. ( 2006 ) EspC, an autotransporter protein secreted by enteropathogenic Escherichia coli (EPEC), displays protease activity on human hemoglobin. FEMS Microbiol Lett 265: 35 – 40.
dc.identifier.citedreferenceYutsudo T., Nakabayashi N., Hirayama T., Takeda Y. ( 1987 ) Purification and some properties of a Vero toxin from Escherichia coli O157:H7 that is immunologically unrelated to Shiga toxin. Microb Pathog 3: 21 – 30.
dc.identifier.citedreferenceGemski P., Lazere J.R., Casey T., Wohlhieter J.A. ( 1980 ) Presence of a virulence‐associated plasmid in Yersinia pseudotuberculosis. Infect Immun 28: 1044 – 7.
dc.identifier.citedreferenceGulig P.A., Curtiss R. 3rd. ( 1987 ) Plasmid‐associated virulence of Salmonella typhimurium. Infect Immun 55: 2891 – 901.
dc.identifier.citedreferenceMonack D.M., Mecsas J., Ghori N., Falkow S. ( 1997 ) Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci USA 94: 10385 – 90.
dc.identifier.citedreferenceChen L.M., Kaniga K., Galán J.E. ( 1996 ) Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol 21: 1101 – 15.
dc.identifier.citedreferenceClark M.F., Adams A.N. ( 1977 ) Characteristics of the microplate method of enzyme‐linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34: 475 – 83.
dc.identifier.citedreferenceFinkelstein R.A., Boesman‐Finkelstein M., Hot P. ( 1983 ) Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc Natl Acad Sci USA 80: 1092 – 5.
dc.identifier.citedreferenceHeussen C., Dowdle E.B. ( 1980 ) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102: 196 – 202.
dc.identifier.citedreferenceNakasone N., Toma C., Higa N., Koizumi Y., Ogura O., Suzuki T. ( 2011 ) Detergents enhance EspB secretion from Escherichia coli strains harboring the locus for the enterocyte effacement (LEE) gene. FEMS Microbiol Lett 315: 109 – 14.
dc.identifier.citedreferenceChina B., Goffaux F., Pirson V., Mainil J. ( 1999 ) Comparison of eae, tir, espA and espB genes of bovine and human attaching and effacing Escherichia coli by multiplex polymerase chain reaction. FEMS Microbiol Lett 178: 177 – 82.
dc.identifier.citedreferenceKyaw C.M., De Araujo C.R., Lima M.R., Gondim E.G.S., Brígido M.M., Giugliano L.G. ( 2003 ) Evidence for the presence of a type III secretion system in diffusely adhering Escherichia coli (DAEC). Infect Genet Evol 3: 111 – 7.
dc.identifier.citedreferenceGauthier A., Puente J.L., Finlay B.B. ( 2003 ) Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun 71: 3310 – 9.
dc.identifier.citedreferenceHåkansson S., Schesser K., Persson C., Galyov E.E., Rosqvist R., Homblé F., Wolf‐Watz H. ( 1996 ) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contract‐dependent membrane disrupting activity. EMBOJ 15: 5812 – 23.
dc.identifier.citedreferenceFrancis M.S., Lloyd S.A., Wolf‐Watz H. ( 2001 ) The type III secretion chaperone LcrH co‐operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol Microbiol 42: 1075 – 93.
dc.identifier.citedreferenceNesse L.L., Berg K., Vestby L.K., Olsaker I., Djønne B. ( 2011 ) Salmonella Typhimurium invasion of HEp‐2 epithelial cells in vitro is increased by N‐acylhomoserine lactone quorum sensing signals. Acta Vet Scand 53: 44.
dc.identifier.citedreferenceLanata C.F., Fischer‐Walker C.L., Olascoaga A.C., Torres C.X., Aryee M.J., Black R.E.; Child Health Epidemiology Reference Group of the World Health Organization and UNICEF ( 2013 ) Global causes of diarrheal disease mortality in children <5 years of age: A systematic review. PLoS ONE 8: e72788.
dc.identifier.citedreferenceCoburn B., Sekirov I., Finlay B.B. ( 2007 ) Type III secretion systems and disease. Clin Microbiol Rev 20: 535 – 49.
dc.identifier.citedreferenceSantos A.S., Finlay B.B. ( 2015 ) Bringing down the host: Enteropathogenic and enterohaemorrhagic Escherichia coli effector‐mediated subversion of host innate immune pathways. Cell Microbiol 17: 318 – 32.
dc.identifier.citedreferenceGutiérrez R.M., Mitchell S., Solis R.V. ( 2008 ) Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117: 1 – 27.
dc.identifier.citedreferenceOchoa T.J., Noguera‐Obenza M., Ebel F., Guzman C.A., Gomez H.F., Cleary T.G. ( 2003 ) Lactoferrin impairs type III secretory system function in enteropathogenic Escherichia coli. Infect Immun 71: 5149 – 55.
dc.identifier.citedreferenceToma C., Lu Y., Higa N., Nakasone N., Chinen I., Baschkier A., Rivas M., Iwanaga M. ( 2003 ) Multiplex PCR assay for identification of human diarrheagenic Escherichia coli. J Clin Microbiol 41: 2669 – 71.
dc.identifier.citedreferenceMcDaniel T.K., Jarvis K.G., Donnenberg M.S., Kaper J.B. ( 1995 ) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92: 1664 – 8.
dc.identifier.citedreferenceWong A.R., Pearson J.S., Bright M.D., Munera D., Robinson K.S., Lee S.F., Frankel G., Hartland E.L. ( 2011 ) Enteropathogenic and enterohaemorrhagic Escherichia coli: Even more subversive elements. Mol Microbiol 80: 1420 – 38.
dc.identifier.citedreferenceLu Y., Toma C., Honma Y., Iwanaga M. ( 2002 ) Detection of EspB using reversed passive latex agglutination: Application to determination of enteropathogenic Escherichia coli. Diagn Microbiol Infect Dis 43: 7 – 12.
dc.identifier.citedreferenceNakasone N., Toma C., Lu Y., Iwanaga M. ( 2007 ) Development of a rapid immunochromatographic test to identify enteropathogenic and enterohemorrhagic Escherichia coli by detecting EspB. Diagn Microbiol Infect Dis 57: 21 – 5.
dc.identifier.citedreferencePetruzziello‐Pellegrini T.N., Marsden P.A. ( 2012 ) Shiga toxin‐associated hemolytic uremic syndrome: Advances in pathogenesis and therapeutics. Curr Opin Nephrol Hypertens 21: 433 – 40.
dc.identifier.citedreferenceHueck C.J. ( 1998 ) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379 – 433.
dc.identifier.citedreferenceNicholson T.L., Brockmeier S.L., Loving C.L., Register K.B., Kehrli M.E. Jr., Shore S.M. ( 2014 ) The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect Immun 82: 1092 – 103.
dc.identifier.citedreferenceNordfelth R., Kauppi A.M., Norberg H.A., Wolf‐Watz H., Elofsson M. ( 2005 ) Small‐molecule inhibitors specifically targeting type III secretion. Infect Immun 73: 3104 – 14.
dc.identifier.citedreferenceHudson D., Layton A.N., Field T.R., Bowen A.J., Wolf‐Watz H., Elofsson M., Stevens M.P., Galyov E.E. ( 2007 ) Inhibition of type III secretion in Salmonella enterica serovar Typhimurium by small‐molecule inhibitors. Antimicrob Agents Chemother 51: 2631 – 5.
dc.identifier.citedreferenceVeenendaal A.K., Sundin C., Blocker A.J. ( 2009 ) Small‐molecule type III secretion system inhibitors block assembly of the Shigella type III secretion. J Bacteriol 191: 563 – 70.
dc.identifier.citedreferenceKimura K., Iwatsuki M., Nagai T., Matsumoto A., Takahashi Y., Shiomi K., Omura S., Abe A. ( 2011 ) A small‐molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. J Antibiot 64: 197 – 203.
dc.identifier.citedreferenceGu L., Zhou S., Zhu L., Liang C., Chen X. ( 2015 ) Small‐molecule inhibitors of the type III secretion system. Molecules 20: 17659 – 74.
dc.identifier.citedreferenceSittiwet C., Puangpronpitag D. ( 2009 ) Antimicrobial properties of Derris scandens aqueous extract. J Biol Sci 9: 607 – 11.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.