Show simple item record

Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1â mediated p62/sequestosome 1 phosphorylation

dc.contributor.authorCho, Chun‐seok
dc.contributor.authorPark, Hwan‐woo
dc.contributor.authorHo, Allison
dc.contributor.authorSemple, Ian A.
dc.contributor.authorKim, Boyoung
dc.contributor.authorJang, Insook
dc.contributor.authorPark, Haeli
dc.contributor.authorReilly, Shannon
dc.contributor.authorSaltiel, Alan R.
dc.contributor.authorLee, Jun Hee
dc.date.accessioned2018-11-20T15:32:41Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationCho, Chun‐seok ; Park, Hwan‐woo ; Ho, Allison; Semple, Ian A.; Kim, Boyoung; Jang, Insook; Park, Haeli; Reilly, Shannon; Saltiel, Alan R.; Lee, Jun Hee (2018). "Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1â mediated p62/sequestosome 1 phosphorylation." Hepatology 68(4): 1331-1346.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/146331
dc.publisherWiley Periodicals, Inc.
dc.titleLipotoxicity induces hepatic protein inclusions through TANK binding kinase 1â mediated p62/sequestosome 1 phosphorylation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146331/1/hep29742.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146331/2/hep29742_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146331/3/hep29742-sup-0011-suppinfo.pdf
dc.identifier.doi10.1002/hep.29742
dc.identifier.sourceHepatology
dc.identifier.citedreferenceWest AP, Khouryâ Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015; 520: 553 â 557.
dc.identifier.citedreferencePark HW, Lee JH. Calcium channel blockers as potential therapeutics for obesityâ associated autophagy defects and fatty liver pathologies. Autophagy 2014; 10: 2385 â 2386.
dc.identifier.citedreferenceMatsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 2011; 44: 279 â 289.
dc.identifier.citedreferencePilli M, Arkoâ Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, et al. TBKâ 1 promotes autophagyâ mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37: 223 â 234.
dc.identifier.citedreferenceClark K, Plater L, Peggie M, Cohen P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Serâ 172 phosphorylation and activation. J Biol Chem 2009; 284: 14136 â 14146.
dc.identifier.citedreferenceReilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, et al. An inhibitor of the protein kinases TBK1 and IKKâ epsilon improves obesityâ related metabolic dysfunctions in mice. Nat Med 2013; 19: 313 â 321.
dc.identifier.citedreferenceBarber GN. STINGâ dependent cytosolic DNA sensing pathways. Trends Immunol 2014; 35: 88 â 93.
dc.identifier.citedreferenceFu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 2012; 15: 623 â 634.
dc.identifier.citedreferenceMukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun 2016; 7: 11932.
dc.identifier.citedreferenceCai X, Chiu YH, Chen ZJ. The cGASâ cGAMPâ STING pathway of cytosolic DNA sensing and signaling. Mol Cell 2014; 54: 289 â 296.
dc.identifier.citedreferenceRongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 2014; 159: 1563 â 1577.
dc.identifier.citedreferenceGarciaâ Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016; 126: 859 â 864.
dc.identifier.citedreferenceRolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 2012; 52: 59 â 69.
dc.identifier.citedreferenceKatsuragi Y, Ichimura Y, Komatsu M. Regulation of the Keap1â Nrf2 pathway by p62/SQSTM1. Curr Opin Toxicol 2016; 1: 54 â 61.
dc.identifier.citedreferenceReilly SM, Ahmadian M, Zamarron BF, Chang L, Uhm M, Poirier B, et al. A subcutaneous adipose tissueâ liver signalling axis controls hepatic gluconeogenesis. Nat Commun 2015; 6: 6047.
dc.identifier.citedreferenceFriedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134: 1655 â 1669.
dc.identifier.citedreferenceParola M, Robino G. Oxidative stressâ related molecules and liver fibrosis. J Hepatol 2001; 35: 297 â 306.
dc.identifier.citedreferenceKomatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagyâ deficient mice. Cell 2007; 131: 1149 â 1163.
dc.identifier.citedreferenceYu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm 2012; 2012: 979105.
dc.identifier.citedreferenceAigelsreiter A, Neumann J, Pichler M, Halasz J, Zatloukal K, Berghold A, et al. Hepatocellular carcinomas with intracellular hyaline bodies have a poor prognosis. Liver Int 2017; 37: 600 â 610.
dc.identifier.citedreferenceBao L, Chandra PK, Moroz K, Zhang X, Thung SN, Wu T, Dash S. Impaired autophagy response in human hepatocellular carcinoma. Exp Mol Pathol 2014; 96: 149 â 154.
dc.identifier.citedreferenceDuran A, Hernandez ED, Reinaâ Campos M, Castilla EA, Subramaniam S, Raghunandan S, et al. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell 2016; 30: 595 â 609.
dc.identifier.citedreferenceOral EA, Reilly SM, Gomez AV, Meral R, Butz L, Ajluni N, et al. Inhibition of IKKvarepsilon and TBK1 Improves Glucose Control in a Subset of Patients with Type 2 Diabetes. Cell Metab 2017; 26: 157 â 170.e7.
dc.identifier.citedreferenceScherer PE, Hill JA. Obesity, diabetes, and cardiovascular diseases: a compendium. Circ Res 2016; 118: 1703 â 1705.
dc.identifier.citedreferenceCusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142: 711 â 725.e6.
dc.identifier.citedreferenceZatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 2002; 160: 255 â 263.
dc.identifier.citedreferenceStrnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad spectrum of hepatocyte inclusions in humans, animals, and experimental models. Compr Physiol 2013; 3: 1393 â 1436.
dc.identifier.citedreferenceKucukoglu O, Guldiken N, Chen Y, Usachov V, Elâ Heliebi A, Haybaeck J, et al. Highâ fat diet triggers Malloryâ Denk body formation through misfolding and crosslinking of excess keratin 8. Hepatology 2014; 60: 169 â 178.
dc.identifier.citedreferenceMarengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016; 67: 103 â 117.
dc.identifier.citedreferenceCaldwell S, Ikura Y, Dias D, Isomoto K, Yabu A, Moskaluk C, et al. Hepatocellular ballooning in NASH. J Hepatol 2010; 53: 719 â 723.
dc.identifier.citedreferenceStumptner C, Fuchsbichler A, Heid H, Zatloukal K, Denk H. Mallory bodyâ a diseaseâ associated type of sequestosome. Hepatology 2002; 35: 1053 â 1062.
dc.identifier.citedreferenceBrunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol 2010; 16: 5286 â 5296.
dc.identifier.citedreferenceRinella ME, Elias MS, Smolak RR, Fu T, Borensztajn J, Green RM. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine cholineâ deficient diet. J Lipid Res 2008; 49: 1068 â 1076.
dc.identifier.citedreferenceMatsumoto M, Hada N, Sakamaki Y, Uno A, Shiga T, Tanaka C, et al. An improved mouse model that rapidly develops fibrosis in nonâ alcoholic steatohepatitis. Int J Exp Pathol 2013; 94: 93 â 103.
dc.identifier.citedreferenceUmemura A, He F, Taniguchi K, Nakagawa H, Yamachika S, Fontâ Burgada J, et al. p62, Upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCCâ initiating cells. Cancer Cell 2016; 29: 935 â 948.
dc.identifier.citedreferenceGonzalezâ Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilenaâ Colina ME, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 2014; 5: e1179.
dc.identifier.citedreferenceYang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010; 11: 467 â 478.
dc.identifier.citedreferencePark HW, Park H, Semple IA, Jang I, Ro SH, Kim M, et al. Pharmacological correction of obesityâ induced autophagy arrest using calcium channel blockers. Nat Commun 2014; 5: 4834.
dc.identifier.citedreferenceMoscat J, Karin M, Diazâ Meco MT. p62 in cancer: signaling adaptor beyond autophagy. Cell 2016; 167: 606 â 609.
dc.identifier.citedreferencePark HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, et al. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 2014; 5: 4233.
dc.identifier.citedreferenceGanley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomalâ lysosomal fusion mechanism revealed by thapsigarginâ induced autophagy arrest. Mol Cell 2011; 42: 731 â 743.
dc.identifier.citedreferenceMauvezin C, Neufeld TP. Bafilomycin A1 disrupts autophagic flux by inhibiting both Vâ ATPaseâ dependent acidification and Caâ P60A/SERCAâ dependent autophagosomeâ lysosome fusion. Autophagy 2015; 11: 1437 â 1438.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.