Show simple item record

Monitoring Stray Natural Gas in Groundwater With Dissolved Nitrogen. An Example From Parker County, Texas

dc.contributor.authorLarson, Toti E.
dc.contributor.authorNicot, Jean‐philippe
dc.contributor.authorMickler, Patrick
dc.contributor.authorCastro, M. Clara
dc.contributor.authorDarvari, Roxana
dc.contributor.authorWen, Tao
dc.contributor.authorHall, Chris M.
dc.date.accessioned2018-11-20T15:33:18Z
dc.date.available2019-11-01T15:10:32Zen
dc.date.issued2018-09
dc.identifier.citationLarson, Toti E.; Nicot, Jean‐philippe ; Mickler, Patrick; Castro, M. Clara; Darvari, Roxana; Wen, Tao; Hall, Chris M. (2018). "Monitoring Stray Natural Gas in Groundwater With Dissolved Nitrogen. An Example From Parker County, Texas." Water Resources Research 54(9): 6024-6041.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/146362
dc.description.abstractConcern that hydraulic fracturing and natural gas production contaminates groundwater requires techniques to attribute and estimate methane flux. Although dissolved alkane and noble gas chemistry may distinguish thermogenic and microbial methane, low solubility and concentration of methane in atmosphereâ equilibrated groundwater precludes the use of methane to differentiate locations affected by high and low flux of stray methane. We present a method to estimate stray gas infiltration into groundwater using dissolved nitrogen. Due to the high concentration of nitrogen in atmosphericâ recharged groundwater and low concentration in natural gas, dissolved nitrogen in groundwater is much less sensitive to change than dissolved methane and may differentiate groundwater affected high and low flux of stray natural gas. We report alkane and nitrogen chemistry from shallow groundwater wells and eight natural gas production wells in the Barnett Shale footprint to attribute methane and estimate mixing ratios of thermogenic natural gas to groundwater. Most groundwater wells have trace to nondetect concentrations of methane. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas from the Barnett Shale and/or shallower Strawn Group suggesting that localized migration of natural gas occurred. Twoâ component mixing models constructed with dissolved nitrogen concentrations and isotope values identify three wells that were likely affected by a large influx of natural gas with gas:water mixing ratios approaching 1:5. Most groundwater wells, even those with greater than 10â mg/L methane, have dissolved nitrogen chemistry typical of atmosphereâ equilibrated groundwater suggesting natural gas:water mixing ratios smaller than 1:20.Plain Language SummaryHydraulic fracturing, horizontal drilling, and associated natural gas production have dramatically changed the energy landscape across America over the past 10 years. Along with this renaissance in the energy sector has come public concern that hydraulic fracturing may contaminate groundwater. In this study we measure the chemistry of dissolved gas from shallow groundwater wells located above the Barnett Shale natural gas play, a tight gas reservoir located west of the Dallasâ Fort Worth Metroplex. We compare groundwater chemistry results to natural gas chemistry results from nearby production wells. Most groundwater wells have trace to nondetectible concentrations of methane, consistent with no measurable infiltration of natural gas into shallow groundwater. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas. Using dissolved nitrogen and alkane concentrations and their stable isotope ratios in combination with chemical mixing models, we conclude that natural gas transported from the shallower Strawn Group affected these groundwater wells rather than natural gas from the deeper Barnett Shale, which is the target of hydraulic fracturing in this area. These results suggest that hydraulic fracturing has not affected shallow groundwater drinking sources in this area.Key PointsDissolved nitrogen in groundwater provides a means to differentiate highâ and lowâ flux infiltration of stray gasNitrogen concentrations and isotope values may attribute natural gas sources
dc.publisherJohn Wiley
dc.subject.othermethane
dc.subject.othergroundwater
dc.subject.otherdissolved gas
dc.subject.otherhydraulic fracturing
dc.subject.othernatural gas
dc.subject.othercontamination
dc.titleMonitoring Stray Natural Gas in Groundwater With Dissolved Nitrogen. An Example From Parker County, Texas
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/1/wrcr23523.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/2/wrcr23523_am.pdf
dc.identifier.doi10.1029/2018WR022612
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferencePrinzhofer, A., Mello, M. R., & Takaki, T. ( 2000 ). Geochemical characterization of natural gas: A physical multivariable approach and its applications in maturity and migration estimates. AAPG Bulletin, 84 ( 8 ), 1152 â 1172.
dc.identifier.citedreferenceMoritz, A., Helie, J.â F., Pinti, D. L., Larocque, M., Barnetche, D., Retailleau, S., et al. ( 2015 ). Methane baseline concentrations and sources in shallow aquifers from the shale gasâ prone region of the St. Lawrence lowlands (Quebec, Canada). Environmental Science & Technology, 49 ( 7 ), 4765 â 4771.
dc.identifier.citedreferenceNicot, J. P. ( 2013 ). Flow and salinity patterns in the lowâ transmissivity upper Paleozoic aquifers of Northâ Central Texas. Gulf Coast Association of Geological Societies Journal, 2, 53 â 67.
dc.identifier.citedreferenceNicot, J. P., Mickler, P., Larson, T., Clara Castro, M., Darvari, R., Uhlman, K., & Costley, R. ( 2017 ). Methane occurrences in aquifers overlying the Barnett shale play with a focus on Parker County, Texas. Groundwater, 55 ( 4 ), 469 â 481.
dc.identifier.citedreferenceNicot, J. P., Scanlon, B. R., Reedy, R. C., & Costley, R. A. ( 2014 ). Source and fate of hydraulic fracturing water in the Barnett shale: A historical perspective. Environmental Science & Technology, 48 ( 4 ), 2464 â 2471.
dc.identifier.citedreferenceNordstrom, P. L. ( 1982 ). Occurrence, availability, and chemical quality of ground water in the cretaceous aquifers of North Central Texas.
dc.identifier.citedreferenceOsborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. ( 2011 ). Methane contamination of drinking water accompanying gasâ well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences, 108 ( 20 ), 8172 â 8176. https://doi.org/10.1073/pnas.1100682108
dc.identifier.citedreferencePollastro, R. M., Jarvie, D. M., Hill, R. J., & Adams, C. W. ( 2007 ). Geologic framework of the Mississippian Barnett shale, Barnettâ Paleozoic total petroleum system, Bend Arch, Fort Worth basin, Texas. AAPG Bulletin, 91 ( 4 ), 405 â 436.
dc.identifier.citedreferenceRodriguez, N. D., & Philp, R. P. ( 2010 ). Geochemical characterization of gases from the Mississippian Barnett shale, Fort Worth basin, Texas. AAPG Bulletin, 94 ( 11 ), 1641 â 1656.
dc.identifier.citedreferenceRostron, B., & Arkadakskiy, S. ( 2014 ). Fingerprinting â strayâ formation fluids associated and production with hydrocarbon exploration and production. Elements, 10 ( 4 ), 285 â 290. https://doi.org/10.2113/gselements.10.4.285
dc.identifier.citedreferenceSchoell, M. ( 1980 ). The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, 44 ( 5 ), 649 â 661.
dc.identifier.citedreferenceSiegel, D. I., Azzolina, N. A., Smith, B. J., Perry, A. E., & Bothun, R. L. ( 2015 ). Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in northeastern Pennsylvania. Environmental Science & Technology, 49 ( 7 ), 4106 â 4112.
dc.identifier.citedreferenceSolomon, D., Hunt, A., & Poreda, R. ( 1996 ). Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater. Water Resources Research, 32 ( 6 ), 1805 â 1813.
dc.identifier.citedreferenceStumm, W., & Morgan, J. J. ( 2012 ). Aquatic chemistry: Chemical Equilibria and Rates in Natural Waters (3rd ed.). New York: John Wiley.
dc.identifier.citedreferenceThompson, H. ( 2012 ). Fracking boom spurs environmental audit. Nature, 485, 556 â 557.
dc.identifier.citedreferenceTorres, M. E., Mix, A. C., & Rugh, W. D. ( 2005 ). Precise δ 13 C analysis of dissolved inorganic carbon in natural waters using automated headspace sampling and continuousâ flow mass spectrometry. Limnology & Oceanography: Methods, 3, 349 â 360.
dc.identifier.citedreferenceValentine, D. L., & Reeburgh, W. S. ( 2000 ). New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2 ( 5 ), 477 â 484. https://doi.org/10.1046/j.1462-2920.2000.00135.x
dc.identifier.citedreferenceVogel, J., Talma, A., & Heaton, T. ( 1981 ). Gaseous nitrogen as evidence for denitrification in groundwater. Journal of Hydrology, 50, 191 â 200.
dc.identifier.citedreferenceWagner, W., & Pruss, A. ( 1993 ). International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990. Addendum to Journal of Physical and Chemical Reference Data 16, 893 (1987). Journal of Physical and Chemical Reference Data, 22 ( 3 ), 783 â 787.
dc.identifier.citedreferenceWaldron, S., Scott, E. M., Vihermaa, L. E., & Newton, J. ( 2014 ). Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuousâ flow isotopeâ ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 28 ( 10 ), 1117 â 1126. https://doi.org/10.1002/rcm.6873
dc.identifier.citedreferenceWeiss, R. ( 1970 ). The Solubility of Nitrogen, Oxygen and Argon in Water and Seawater. Deepâ Sea Research, 17, 721 â 735.
dc.identifier.citedreferenceWen, T., Castro, M. C., Ellis, B. R., Hall, C. M., & Lohmann, K. C. ( 2015 ). Assessing compositional variability and migration of natural gas in the Antrim shale in the Michigan basin using noble gas geochemistry. Chemical Geology, 417, 356 â 370.
dc.identifier.citedreferenceWen, T., Castro, M. C., Nicot, J.â P., Hall, C. M., Larson, T., Mickler, P. J., & Darvari, R. ( 2016 ). Methane Sources and Migration Mechanisms in Shallow Groundwaters in Parker and Hood Counties, Texasâ A Heavy Noble Gas Analysis (Vol.  50, pp. 12,012 â 12,021 ).
dc.identifier.citedreferenceWen, T., M. C. Castro, J.â P. Nicot, Hall, C. M., Pinti, D. L., Mickler, P., et al. ( 2017 ). Characterizing the noble gas isotopic composition of the Barnett shale and Strawn group and constraining the source of stray gas in the Trinity aquifer, Northâ Central Texas. Environmental Science & Technology, 51 ( 11 ), 6533 â 6541. https://doi.org/10.1021/acs.est.6b06447
dc.identifier.citedreferenceWhiticar, M. J. ( 1999 ). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161 ( 1 ), 291 â 314.
dc.identifier.citedreferenceWolin, M. J., & Miller, T. L. ( 1987 ). Bioconversion of organic carbon to CH 4 and CO 2. Geomicrobiology Journal, 5 ( 3â 4 ), 239 â 259. https://doi.org/10.1080/01490458709385972
dc.identifier.citedreferenceZhang, C., Grossman, E. L., & Ammerman, J. W. ( 1998 ). Factors influencing methane distribution in Texas ground water. Groundwater, 36 ( 1 ), 58 â 66. https://doi.org/10.1111/j.1745-6584.1998.tb01065.x
dc.identifier.citedreferenceAshworth, J., Hopkins, J., & Board, T. W. D. ( 1995 ). Aquifers of Texas. no. 345 in Aquifers of Texas, Texas Water Development Board.
dc.identifier.citedreferenceBall, M. M., & Perry, W. ( 1995 ). Bend Archâ Fort Worth basin province (045). DL Gautier, GL Dolton, KI Takahashi, and KL Varnes, eds.
dc.identifier.citedreferenceBallentine, C. J., Burgess, R., & Marty, B. ( 2002 ). Tracing fluid origin, transport and interaction in the crust. Reviews in Mineralogy and Geochemistry, 47 ( 1 ), 539 â 614.
dc.identifier.citedreferenceBallentine, C., O’Nions, R., Oxburgh, E., Horvath, F., & Deak, J. ( 1991 ). Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian basin. Earth and Planetary Science Letters, 105 ( 1 ), 229 â 246. https://doi.org/10.1016/0012-821X(91)90133-3
dc.identifier.citedreferenceBarker, J. F., & Fritz, P. ( 1981 ). Carbon isotope fractionation during microbial methane oxidation. Nature, 293, 289 â 291.
dc.identifier.citedreferenceBernard, B., Brooks, J. M., & Sackett, W. M. ( 1977 ). A geochemical model for characterization of hydrocarbon gas sources in marine sediments. In Offshore Technology Conference (pp. 425 â 438 ).
dc.identifier.citedreferenceBrown, L. F. Jr. ( 1973 ). Cratonic basins: Terrigenous clastic models: in Guidebook No. 14, Pennsylvanian Depositional Systems in North Central Texas. Bureau of Economic Geology, 10 â 30.
dc.identifier.citedreferenceCey, B. D., Hudson, G. B., Moran, J. E., & Scanlon, B. R. ( 2009 ). Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer. Groundwater, 47 ( 5 ), 646 â 659.
dc.identifier.citedreferenceChaudhuri, S., & Ale, S. ( 2013 ). Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas. Science of The Total Environment, 452â 453, 333 â 348. https://doi.org/10.1016/j.scitotenv.2013.02.081
dc.identifier.citedreferenceChristian, K. M., Lautz, L. K., Hoke, G. D., Siegel, D. I., Lu, Z., & Kessler, J. ( 2016 ). Methane occurrence is associated with sodiumâ rich valley waters in domestic wells overlying the Marcellus shale in New York State. Water Resources Research, 52, 206 â 226. https://doi.org/10.1002/2015WR017805
dc.identifier.citedreferenceDarrah, T. H., Vengosh, A., Jackson, R. B., Warner, N. R., & Poreda, R. J. ( 2014 ). Noble gases identify the mechanisms of fugitive gas contamination in drinkingâ water wells overlying the Marcellus and Barnett shales. Proceedings of the National Academy of Sciences, 111 ( 39 ), 14,076 â 14,081. https://doi.org/10.1073/pnas.1322107111
dc.identifier.citedreferenceDarvari, R., Nicot, J.â P., Scanlon, B. R., Mickler, P., & Uhlman, K. ( 2017 ). Trace element behavior in methaneâ rich and methaneâ free groundwater in north and east Texas. Groundwater. https://doi.org/10.1111/gwat.12606
dc.identifier.citedreferenceEltschlager, K. K., Hawkins, J. W., Ehler, W. C., Baldassare, F., & Baldassare, F. ( 2001 ). Technical measures for the investigation and mitigation of fugitive methane hazards in areas of coal mining (US Dept of the Interior, Office of Surface Mining Reclamation and Enforcement, Pittsburgh) (pp. 124 ).
dc.identifier.citedreferenceEttwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., et al. ( 2010 ). Nitriteâ driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464 ( 7288 ), 543 â 548.
dc.identifier.citedreferenceFuex, A. ( 1980 ). Experimental evidence against an appreciable isotopic fractionation of methane during migration. Physics and Chemistry of the Earth, 12, 725 â 732.
dc.identifier.citedreferenceGilfillan, S. M., Lollar, B. S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., et al. ( 2009 ). Solubility trapping in formation water as dominant CO 2 sink in natural gas fields. Nature, 458, 614 â 618.
dc.identifier.citedreferenceGolding, S. D., Boreham, C. J., & Esterle, J. S. ( 2013 ). Stable isotope geochemistry of coal bed and shale gas and related production waters: A review. International Journal of Coal Geology, 120, 24 â 40.
dc.identifier.citedreferenceGrossman, E. L., Coffman, B. K., Fritz, S. J., & Wada, H. ( 1989 ). Bacterial production of methane and its influence on groundâ water chemistry in eastâ central Texas aquifers. Geology, 17 ( 6 ), 495 â 499.
dc.identifier.citedreferenceHeaton, T., & Vogel, J. ( 1981 ). â Excess airâ in groundwater. Journal of Hydrology, 50, 201 â 216.
dc.identifier.citedreferenceIHS ( 2015 ). Well completion and production reports supplied by the Enerdeq database. Retrieved from https://www.ihs.com/products/oilâ gasâ toolsâ enerdeqâ browser.html
dc.identifier.citedreferenceJackson, R. B., Vengosh, A., Darrah, T. H., Warner, N. R., Down, A., Poreda, R. J., et al. ( 2013 ). Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proceedings of the National Academy of Sciences, 110 ( 28 ), 11,250 â 11,255. https://doi.org/10.1073/pnas.1221635110
dc.identifier.citedreferenceJarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. ( 2007 ). Unconventional shaleâ gas systems: The Mississippian Barnett shale of Northâ Central Texas as one model for thermogenic shaleâ gas assessment. AAPG Bulletin, 91 ( 4 ), 475 â 499.
dc.identifier.citedreferenceJenden, P., Kaplan, I., Poreda, R., & Craig, H. ( 1988 ). Origin of nitrogenâ rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52 ( 4 ), 851 â 861. https://doi.org/10.1016/0016-7037(88)90356-0
dc.identifier.citedreferenceKampbell, D. H., & Vandegrift, S. A. ( 1998 ). Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique. Journal of Chromatographic Science, 36 ( 5 ), 253 â 256.
dc.identifier.citedreferenceKlots, C., & Benson, B. ( 1963 ). Solubilities of nitrogen, oxygen, and argon in distilled water. Journal of Marine Research, 21, 48 â 57.
dc.identifier.citedreferenceKnowles, R. ( 1982 ). Denitrification. Microbiological Reviews, 46 ( 1 ), 43 â 70.
dc.identifier.citedreferenceKornacki, A. S., & McCaffrey, M. ( 2014 ). Monitoring the active migration and biodegradation of natural gas in the trinity troup aquifer at the Silverado development in southern Parker County, Texas. AAPG 2014 Annual Conference.
dc.identifier.citedreferenceKreitler, C. W., & Browning, L. A. ( 1983 ). Nitrogenâ isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution, V.T. Stringfield symposiumâ Processes in Karst hydrology. Journal of Hydrology, 61 ( 1 ), 285 â 301. https://doi.org/10.1016/0022-1694(83)90254-8
dc.identifier.citedreferenceKrooss, B., Littke, R., Müller, B., Frielingsdorf, J., Schwochau, K., & Idiz, E. ( 1995 ). Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations. Chemical Geology, 126 ( 3 ), 291 â 318.
dc.identifier.citedreferenceLoucks, R. G., & Ruppel, S. C. ( 2007 ). Mississippian Barnett shale: Lithofacies and depositional setting of a deepâ water shaleâ gas succession in the Fort Worth basin, Texas. AAPG Bulletin, 91 ( 4 ), 579 â 601.
dc.identifier.citedreferenceLu, J., Larson, T. E., & Smyth, R. C. ( 2015 ). Carbon isotope effects of methane transport through Anahuac shaleâ A core gas study. Journal of Geochemical Exploration, 148, 138 â 149.
dc.identifier.citedreferenceMárquez, G., Escobar, M., Lorenzo, E., Gallego, J., & Tocco, R. ( 2013 ). Using gas geochemistry to delineate structural compartments and assess petroleum reservoirâ filling directions: A Venezuelan case study. Journal of South American Earth Sciences, 43, 1 â 7.
dc.identifier.citedreferenceMingram, B., Hoth, P., & Harlov, D. E. ( 2003 ). Nitrogen potential of Namurian shales in the North German basin. Journal of Geochemical Exploration, 78, 405 â 408.
dc.identifier.citedreferenceMolofsky, L. J., Connor, J. A., Wylie, A. S., Wagner, T., & Farhat, S. K. ( 2013 ). Evaluation of methane sources in groundwater in northeastern Pennsylvania. Groundwater, 51 ( 3 ), 333 â 349.
dc.identifier.citedreferenceMolofsky, L. J., Richardson, S. D., Gorody, A. W., Baldassare, F., Black, J. A., McHugh, T. E., & Connor, J. A. ( 2016 ). Effect of different sampling methodologies on measured methane concentrations in groundwater samples. Groundwater, 54 ( 5 ), 669 â 680. https://doi.org/10.1111/gwat.12415
dc.identifier.citedreferenceMontgomery, S. L., Jarvie, D. M., Bowker, K. A., & Pollastro, R. M. ( 2005 ). Mississippian Barnett shale, Fort Worth basin, Northâ Central Texas: Gasâ shale play with multiâ trillion cubic foot potential. AAPG Bulletin, 89 ( 2 ), 155 â 175.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.