Show simple item record

Leveraging coffee‐ring effect on plasmonic paper substrate for sensitive analyte detection using Raman spectroscopy

dc.contributor.authorHuang, Zufang
dc.contributor.authorNagpal, Arun
dc.contributor.authorSiddhanta, Soumik
dc.contributor.authorBarman, Ishan
dc.date.accessioned2018-11-20T15:33:25Z
dc.date.available2019-11-01T15:10:32Zen
dc.date.issued2018-09
dc.identifier.citationHuang, Zufang; Nagpal, Arun; Siddhanta, Soumik; Barman, Ishan (2018). "Leveraging coffee‐ring effect on plasmonic paper substrate for sensitive analyte detection using Raman spectroscopy." Journal of Raman Spectroscopy 49(9): 1552-1558.
dc.identifier.issn0377-0486
dc.identifier.issn1097-4555
dc.identifier.urihttps://hdl.handle.net/2027.42/146368
dc.description.abstractRaman spectroscopy has demonstrated immense promise as a molecular fingerprinting tool in biomedical diagnostics. However, the utility of conventional Raman scattering for ultrasensitive measurements of biofluids is limited by intrinsically weak signals and has spurred advances in and wider applications of plasmon‐enhanced measurements. Here, we propose a label‐free methodology that leverages drop coating deposition on a silver ink‐based plasmonic paper substrate with tunable hydrophobic attributes to combine two distinct sources of enhancement, namely, solute preconcentration and excitation of localized surface plasmons. The facile modulation of the hydrophobicity of the plasmonic silver paper facilitates investigations into the coffee‐ring effect that results from the interplay of contact line pinning, solvent evaporation, and capillary flow. We show that the Raman spectra acquired from the hydrated ring deposits show clear enhancement beyond that obtained from surface‐enhancement owing to the presence of the silver nanofilm. In light of the superior sensitivity and lack of substantive sample preparation requirements, our findings open the door for a complementary low‐cost paper‐based analytical device for molecular sensing.We propose a label‐free analytical tool that leverages drop coating deposition on a silver ink‐based plasmonic paper substrate to combine two distinct sources of enhancement for Raman scattering signals. The facile modulation of the hydrophobicity of the plasmonic silver paper facilitates investigations into the coffee‐ring effect that results from the interplay of contact line pinning, solvent evaporation, and capillary flow. Raman spectra acquired show clear enhancement beyond that obtained from surface‐enhancement owing to the presence of the silver nanofilm.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othercoffee ring
dc.subject.otherdiffusion limit
dc.subject.otherdrop coating deposition
dc.subject.othersilver ink
dc.subject.othersurface‐enhanced Raman spectroscopy (SERS)
dc.titleLeveraging coffee‐ring effect on plasmonic paper substrate for sensitive analyte detection using Raman spectroscopy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146368/1/jrs5415_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146368/2/jrs5415.pdf
dc.identifier.doi10.1002/jrs.5415
dc.identifier.sourceJournal of Raman Spectroscopy
dc.identifier.citedreferenceF. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. di Fabrizio, Nat. Photonics. 2011, 5 ( 11 ), 682.
dc.identifier.citedreferenceI. Barman, N. C. Dingari, J. W. Kang, G. L. Horowitz, R. R. Dasari, M. S. Feld, Anal. Chem. 2012, 84 ( 5 ), 2474.
dc.identifier.citedreferenceP. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, Nature 2011, 476 ( 7360 ), 308.
dc.identifier.citedreferenceH. Hu, R. G. Larson, J. Phys. Chem. B. 2006, 110 ( 14 ), 7090.
dc.identifier.citedreferenceX. Shen, C. M. Ho, T. S. Wong, J. Phys. Chem. B. 2010, 114 ( 16 ), 5269.
dc.identifier.citedreferenceK. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, J. Popp, Anal. Bioanal. Chem. 2008, 390 ( 1 ), 113.
dc.identifier.citedreferenceE. P. Hoppmann, W. Y. Wei, I. M. White, IEEE J. Sel. Top. Quantum Electron. 2014, 20 ( 3 ), 195.
dc.identifier.citedreferenceJ. Shao, L. Tong, S. Tang, Z. Guo, H. Zhang, P. Li, H. Wang, C. Du, X. F. Yu, ACS Appl. Mater. Interfaces 2015, 7 ( 9 ), 5391.
dc.identifier.citedreferenceE. P. Hoppmann, W. Y. Wei, I. M. White, Methods 2013, 63 ( 3 ), 219.
dc.identifier.citedreferenceW. Y. Wei, I. M. White, Analyst 2013, 138 ( 13 ), 3679.
dc.identifier.citedreferenceZ. Huang, S. Siddhanta, C. Zhang, T. Kickler, G. Zheng, I. Barman, J Raman Spectrosc. 2017, 48 ( 10 ), 1365.
dc.identifier.citedreferenceP. E. Sheehan, L. J. Whitman, Nano Lett. 2005, 5 ( 4 ), 803.
dc.identifier.citedreferenceP. Nair, M. Alam, Appl. Phys. Lett. 2006, 88 ( 23 ), 233120.
dc.identifier.citedreferenceS. Yang, X. Dai, B. B. Stogin, T. S. Wong, Proc. Natl. Acad. Sci. U. S. A. 2016, 113 ( 2 ), 268.
dc.identifier.citedreferenceW. Wang, Y. Yin, Z. Tan, J. Liu, Nanoscale 2014, 6 ( 16 ), 9588.
dc.identifier.citedreferenceA. Nilghaz, L. Zhang, W. Shen, Chem. Eng. Sci. 2015, 129, 34.
dc.identifier.citedreferenceF. Leroy, F. Müller‐Plathe, Langmuir 2010, 27 ( 2 ), 637.
dc.identifier.citedreferenceJ. Ganesh, A. Peters, V. Luczak, E. P. R. Kalyanaraman, Spectroscopy. 2016, 31 ( 10 ), 31.
dc.identifier.citedreferenceC. Ortiz, D. Zhang, Y. Xie, A. E. Ribbe, D. Ben‐Amotz, Anal. Biochem. 2006, 353 ( 2 ), 157.
dc.identifier.citedreferenceZ. Movasaghi, S. Rehman, I. U. Rehman, Appl. Spectrosc. Rev. 2007, 42 ( 5 ), 493.
dc.identifier.citedreferenceH. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde‐White, N. J. Fullwood, B. Gardner, P. L. Martin‐Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, F. L. Martin, Nat. Protoc. 2016, 11 ( 4 ), 664.
dc.identifier.citedreferenceK. Kneipp, H. Kneipp, H. G. Bohr, Single‐molecule SERS spectroscopy, in Surface‐enhanced Raman Scattering, Springer 2006 261.
dc.identifier.citedreferenceR. A. Tripp, R. A. Dluhy, Y. Zhao, Nano Today. 2008, 3 ( 3 ), 31.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.