Show simple item record

Bone Density in Children With Chronic Liver Disease Correlates With Growth and Cholestasis

dc.contributor.authorLoomes, Kathleen M.
dc.contributor.authorSpino, Cathie
dc.contributor.authorGoodrich, Nathan P.
dc.contributor.authorHangartner, Thomas N.
dc.contributor.authorMarker, Amanda E.
dc.contributor.authorHeubi, James E.
dc.contributor.authorKamath, Binita M.
dc.contributor.authorShneider, Benjamin L.
dc.contributor.authorRosenthal, Philip
dc.contributor.authorHertel, Paula M.
dc.contributor.authorKarpen, Saul J.
dc.contributor.authorMolleston, Jean P.
dc.contributor.authorMurray, Karen F.
dc.contributor.authorSchwarz, Kathleen B.
dc.contributor.authorSquires, Robert H.
dc.contributor.authorTeckman, Jeffrey
dc.contributor.authorTurmelle, Yumirle P.
dc.contributor.authorAlonso, Estella M.
dc.contributor.authorSherker, Averell H.
dc.contributor.authorMagee, John C.
dc.contributor.authorSokol, Ronald J.
dc.date.accessioned2019-01-15T20:24:19Z
dc.date.available2020-03-03T21:29:35Zen
dc.date.issued2019-01
dc.identifier.citationLoomes, Kathleen M.; Spino, Cathie; Goodrich, Nathan P.; Hangartner, Thomas N.; Marker, Amanda E.; Heubi, James E.; Kamath, Binita M.; Shneider, Benjamin L.; Rosenthal, Philip; Hertel, Paula M.; Karpen, Saul J.; Molleston, Jean P.; Murray, Karen F.; Schwarz, Kathleen B.; Squires, Robert H.; Teckman, Jeffrey; Turmelle, Yumirle P.; Alonso, Estella M.; Sherker, Averell H.; Magee, John C.; Sokol, Ronald J. (2019). "Bone Density in Children With Chronic Liver Disease Correlates With Growth and Cholestasis." Hepatology (1): 245-257.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/146848
dc.publisherWiley Periodicals, Inc.
dc.titleBone Density in Children With Chronic Liver Disease Correlates With Growth and Cholestasis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146848/1/hep30196.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146848/2/hep30196-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146848/3/hep30196_am.pdf
dc.identifier.doi10.1002/hep.30196
dc.identifier.sourceHepatology
dc.identifier.citedreferenceRuiz‐Gaspà S, Martinez‐Ferrer A, Guañabens N, Dubreuil M, Peris P, Enjuanes A, et al. Effects of bilirubin and sera from jaundiced patients on osteoblasts: contribution to the development of osteoporosis in liver diseases. Hepatology 2011; 54: 2104 ‐ 2113.
dc.identifier.citedreferenceGuichelaar MMJ, Kendall R, Malinchoc M, Hay JE. Bone mineral density before and after OLT: long‐term follow‐up and predictive factors. Liver Transpl 2006; 12: 1390 ‐ 1402.
dc.identifier.citedreferenceBales CB, Kamath BM, Munoz PS, Nguyen A, Piccoli DA, Spinner NB, et al. Pathologic lower extremity fractures in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 2010; 51: 66 ‐ 70.
dc.identifier.citedreferenceHoffenberg EJ, Narkewicz MR, Sondheimer JM, Smith DJ, Silverman A, Sokol RJ. Outcome of syndromic paucity of interlobular bile ducts (Alagille syndrome) with onset of cholestasis in infancy. J Pediatr 1995; 127: 220 ‐ 224.
dc.identifier.citedreferenceChongsrisawat V, Ruttanamongkol P, Chaiwatanarat T, Chandrakamol B, Poovorawan Y. Bone density and 25‐hydroxy vitamin D in extrahepatic biliary atresia. Pediatr Surg Int 2001; 17: 604 ‐ 608.
dc.identifier.citedreferenceChen HL, Chang MH. Growth failure and metabolic bone disease in progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr 2004; 39: 328 ‐ 330.
dc.identifier.citedreferenceGuthery SL, Pohl JF, Bucuvalas JC, Alonso MH, Ryckman FC, Balistreri WF, et al. Bone mineral density in long‐term survivors following pediatric liver transplantation. Liver Transpl 2003; 9: 365 ‐ 370.
dc.identifier.citedreferenceKryskiewicz E, Pawlowska J, Pludowski P, Ismail H, Karczmarewicz E, Teisseyre M, et al. Bone metabolism in cholestatic children before and after living‐related liver transplantation—a long‐term prospective study. J Clin Densitom 2012; 15: 233 ‐ 240.
dc.identifier.citedreferenceOlsen IE, Ittenbach RF, Rovner AJ, Leonard MB, Mulberg AE, Stallings VA, et al. Deficits in size‐adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 2005; 40: 76 ‐ 82.
dc.identifier.citedreferenceKramer RA, Zemel BS, Arvay‐Nezu JL, Stallings VA, Leonard MB, Haber BA. Bone health in a nonjaundiced population of children with biliary atresia. Gastroenterol Res Pract 2009; 2009: 387029.
dc.identifier.citedreferenceHangartner TN. A study of the long‐term precision of dual‐energy X‐ray absorptiometry bone densitometers and implications for the validity of the least‐significant‐change calculation. Osteoporos Int 2006; 18: 513 ‐ 523.
dc.identifier.citedreferenceHanson J. Standardization of femur BMD. J Bone Miner Res 1997; 12: 1316 ‐ 1317.
dc.identifier.citedreferenceZemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non‐black children: results of the Bone Mineral Density in Childhood Study. J Clin Endocrinol Metab 2011; 96: 3160 ‐ 3169.
dc.identifier.citedreferenceShort DF, Gilsanz V, Kalkwarf HJ, Lappe JM, Oberfield S, Shepherd JA, et al. Anthropometric models of bone mineral content and areal bone mineral density based on the bone mineral density in childhood study. Osteoporos Int 2014; 26: 1099 ‐ 1108.
dc.identifier.citedreferenceWilcox R, Keselman HJ. Modern robust data analysis methods: measures of central tendency. Psychol Methods 2003; 8: 254 ‐ 274.
dc.identifier.citedreferenceShneider BL, Abel B, Haber B, Karpen SJ, Magee JC, Romero R, et al. Portal hypertension in children and young adults with biliary atresia. J Pediatr Gastroenterol Nutr 2012; 55: 567 ‐ 573.
dc.identifier.citedreferenceZemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy X‐ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 2010; 95: 1265 ‐ 1273.
dc.identifier.citedreferenceWasserman H, O’Donnell JM, Gordon CM. Use of dual energy X‐ray absorptiometry in pediatric patients. Bone 2017; 104: 84 ‐ 90.
dc.identifier.citedreferenceNobili V, Marcellini M, Giovannelli L, Girolami E, Muratori F, Giannone G, et al. Association of serum interleukin‐8 levels with the degree of fibrosis in infants with chronic liver disease. J Pediatr Gastroenterol Nutr 2004; 39: 540 ‐ 544.
dc.identifier.citedreferenceShamoun ST, Le Friec G, Spinner N, Kemper C, Baker AJ. Immune dysregulation in Alagille syndrome: a new feature of the evolving phenotype. Clin Res Hepatol Gastroenterol 2015; 39: 566 ‐ 569.
dc.identifier.citedreferenceLe Friec G, Sheppard D, Whiteman P, Karsten CM, Shamoun SA‐T, Laing A, et al. The CD46–Jagged1 interaction is critical for human TH1 immunity. Nat Immunol 2012; 13: 1213 ‐ 1221.
dc.identifier.citedreferenceGuichelaar MMJ, Malinchoc M, Sibonga JD, Clarke BL, Hay EJ. Bone histomorphometric changes after liver transplantation for chronic cholestatic liver disease. J Bone Miner Res 2003; 18: 2190 ‐ 2199.
dc.identifier.citedreferenceWarthen DMD, Moore ECE, Kamath BMB, Morrissette JJDJ, Sanchez‐Lara PAP, Sanchez PP, et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat 2006; 27: 436 ‐ 443.
dc.identifier.citedreferenceKamath BMB, Bauer RCR, Loomes KMK, Chao GG, Gerfen JJ, Hutchinson AA, et al. NOTCH2 mutations in Alagille syndrome. J Med Genet 2012; 49: 138 ‐ 144.
dc.identifier.citedreferencePenton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23: 450 ‐ 457.
dc.identifier.citedreferenceKung AWC, Xiao S‐M, Cherny S, Li GHY, Gao Y, Tso G, et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome‐wide association study and follow‐up replication studies. Am J Hum Genet 2010; 86: 229 ‐ 239.
dc.identifier.citedreferenceHilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 2008; 14: 306 ‐ 314.
dc.identifier.citedreferenceYoungstrom DW, Dishowitz MI, Bales CB, Carr E, Mutyaba PL, Kozloff KM, et al. Jagged1 expression by osteoblast‐lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone 2016; 91: 64 ‐ 74.
dc.identifier.citedreferenceLawal RA, Zhou X, Batey K, Hoffman CM, Georger MA, Radtke F, et al. The Notch ligand Jagged1 regulates the osteoblastic lineage by maintaining the osteoprogenitor pool. J Bone Miner Res 2017; 32: 1320 ‐ 1331.
dc.identifier.citedreferenceManias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 2006; 39: 652 ‐ 657.
dc.identifier.citedreferenceClark EM. Association between bone density and fractures in children: a systematic review and meta‐analysis. Pediatrics 2006; 117: e291 ‐ e297.
dc.identifier.citedreferenceWang KS. Analysis of surgical interruption of the enterohepatic circulation as a treatment for pediatric cholestasis. Hepatology 2017; 65: 1645 – 1654.
dc.identifier.citedreferenceSquires JE, Celik N, Morris A, Soltys K, Mazariegos G, Shneider B, et al. Clinical variability after partial external biliary diversion in familial intrahepatic cholestasis 1 deficiency. J Pediatr Gastroenterol Nutr 2017; 64: 425 ‐ 430.
dc.identifier.citedreferenceMahmoudi A, Sellier N, Reboul‐Marty J, Chalès G, Lalatonne Y, Bourcier V, et al. Bone mineral density assessed by dual‐energy X‐ray absorptiometry in patients with viral or alcoholic compensated cirrhosis. A prospective study. Clin Res Hepatol Gastroenterol 2011; 35: 731 ‐ 737.
dc.identifier.citedreferenceVargas AA, Acevedo JMP, Domingo IG, Jiménez RG, Martín JMS, Ríos MTF, et al. Prevalence and characteristics of bone disease in cirrhotic patients under evaluation for liver transplantation. Transplant Proc 2012; 44: 1496 ‐ 1498.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.