Show simple item record

Acoustic Actuation of Integrin‐Bound Microbubbles for Mechanical Phenotyping during Differentiation and Morphogenesis of Human Embryonic Stem Cells

dc.contributor.authorFan, Zhenzhen
dc.contributor.authorXue, Xufeng
dc.contributor.authorPerera, Reshani
dc.contributor.authorNasr Esfahani, Sajedeh
dc.contributor.authorExner, Agata A.
dc.contributor.authorFu, Jianping
dc.contributor.authorDeng, Cheri X.
dc.date.accessioned2019-01-15T20:26:18Z
dc.date.available2020-02-03T20:18:24Zen
dc.date.issued2018-12
dc.identifier.citationFan, Zhenzhen; Xue, Xufeng; Perera, Reshani; Nasr Esfahani, Sajedeh; Exner, Agata A.; Fu, Jianping; Deng, Cheri X. (2018). "Acoustic Actuation of Integrin‐Bound Microbubbles for Mechanical Phenotyping during Differentiation and Morphogenesis of Human Embryonic Stem Cells." Small 14(50): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/146940
dc.description.abstractEarly human embryogenesis is a dynamic developmental process, involving continuous and concomitant changes in gene expression, structural reorganization, and cellular mechanics. However, the lack of investigation methods has limited the understanding of how cellular mechanical properties change during early human embryogenesis. In this study, ultrasound actuation of functionalized microbubbles targeted to integrin (acoustic tweezing cytometry, ATC) is employed for in situ measurement of cell stiffness during human embryonic stem cell (hESC) differentiation and morphogenesis. Cell stiffness, which is regulated by cytoskeleton structure, remains unchanged in undifferentiated hESCs, but significantly increases during neural differentiation. Further, using the recently established in vitro 3D embryogenesis models, ATC measurements reveal that cells continue to stiffen while maintaining pluripotency during epiblast cyst formation. In contrast, during amniotic cyst formation, cells first become stiffer during luminal cavity formation, but softens significantly when cells differentiate to form amniotic cysts. These results suggest that cell stiffness changes not only due to 3D spatial organization, but also with cell fate change. ATC therefore provides a versatile platform for in situ measurement of cellular mechanical property, and cell stiffness may be used as a mechanical biomarker for cell lineage diversification and cell fate specification during embryogenesis.Ultrasound actuation of functionalized microbubbles targeted to integrin (acoustic tweezing cytometry) is employed for in situ measurement of cell stiffness during human embryonic stem cell neural differentiation and morphogenesis in 3D embryogenesis model. The results suggest that cell stiffness changes not only due to 3D spatial organization, but also with cell fate change.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheracoustic tweezing cytometry
dc.subject.otheramniotic sac
dc.subject.othercell stiffness
dc.subject.otherhuman embryonic stem cells
dc.subject.othermicrobubbles
dc.titleAcoustic Actuation of Integrin‐Bound Microbubbles for Mechanical Phenotyping during Differentiation and Morphogenesis of Human Embryonic Stem Cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146940/1/smll201803137.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146940/2/smll201803137_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146940/3/smll201803137-sup-0001-S1.pdf
dc.identifier.doi10.1002/smll.201803137
dc.identifier.sourceSmall
dc.identifier.citedreferenceZ. Fan, Y. Sun, C. Di, D. Tay, W. Chen, C. X. Deng, J. Fu, Sci. Rep. 2013, 3, 2176.
dc.identifier.citedreferenceK. Ferrara, R. Pollard, M. Borden, Annu. Rev. Biomed. Eng. 2007, 9, 415.
dc.identifier.citedreferencea) Z. Fan, H. Liu, M. Mayer, C. X. Deng, Proc. Natl. Acad. Sci. USA 2012, 109, 16486; b) J. Y. Lee, D. Carugo, C. Crake, J. Owen, M. de Saint Victor, A. Seth, C. Coussios, E. Stride, Adv. Mater. 2015, 27, 5484; c) M. Bez, D. Sheyn, W. Tawackoli, P. Avalos, G. Shapiro, J. C. Giaconi, X. Da, S. B. David, J. Gavrity, H. A. Awad, H. W. Bae, E. J. Ley, T. J. Kremen, Z. Gazit, K. W. Ferrara, G. Pelled, D. Gazit, Sci. Transl. Med. 2017, 9, eaal3128.
dc.identifier.citedreferenceA. L. Klibanov, J. Nucl. Cardiol. 2007, 14, 876.
dc.identifier.citedreferenceY. Xie, N. Nama, P. Li, Z. Mao, P. H. Huang, C. Zhao, F. Costanzo, T. J. Huang, Small 2016, 12, 902.
dc.identifier.citedreferenceD. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna‐Rose, T. J. Huang, Nat. Commun. 2016, 7, 11085.
dc.identifier.citedreferenceT. Topal, X. Hong, X. Xue, Z. Fan, N. Kanetkar, J. T. Nguyen, J. Fu, C. X. Deng, P. H. Krebsbach, Sci. Rep. 2018, 8, 12977.
dc.identifier.citedreferenceX. Xue, X. Hong, Z. Li, C. X. Deng, J. Fu, Biomaterials 2017, 134, 22.
dc.identifier.citedreferencea) T. Lecuit, P.‐F. Lenne, Nat. Rev. Mol. Cell Biol. 2007, 8, 633; b) C. J. Chan, C.‐P. Heisenberg, T. Hiiragi, Curr. Biol. 2017, 27, R1024.
dc.identifier.citedreferenceJ. H. Walter, L. R. Goss, A. T. Lazzara, J. Foot Ankle Surg. 1998, 37, 325.
dc.identifier.citedreferenceR. D. Gonzalez‐Cruz, V. C. Fonseca, E. M. Darling, Proc. Natl. Acad. Sci. USA 2012, 109, E1523.
dc.identifier.citedreferenceD. R. Gossett, T. Henry, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, D. Di Carlo, Proc. Natl. Acad. Sci. USA 2012, 109, 7630.
dc.identifier.citedreferenceF. Chowdhury, S. Na, D. Li, Y.‐C. Poh, T. S. Tanaka, F. Wang, N. Wang, Nat. Mater. 2010, 9, 82.
dc.identifier.citedreferenceX. Xue, Y. Sun, A. M. Resto‐Irizarry, Y. Yuan, K. M. Aw Yong, Y. Zheng, S. Weng, Y. Shao, Y. Chai, L. Studer, J. Fu, Nat. Mater. 2018, 17, 633.
dc.identifier.citedreferenceN. Wang, J. P. Butler, D. E. Ingber, Science 1993, 260, 1124.
dc.identifier.citedreferenceY. Shao, K. Taniguchi, R. F. Townshend, T. Miki, D. L. Gumucio, J. Fu, Nat. Commun. 2017, 8, 208.
dc.identifier.citedreferenceY. Shao, K. Taniguchi, K. Gurdziel, R. F. Townshend, X. Xue, K. M. A. Yong, J. Sang, J. R. Spence, D. L. Gumucio, J. Fu, Nat. Mater. 2017, 16, 419.
dc.identifier.citedreferencea) Y. Tan, C. W. Kong, S. Chen, S. H. Cheng, R. A. Li, D. Sun, J. Biomech. 2012, 45, 123; b) G. Ofek, V. P. Willard, E. J. Koay, J. C. Hu, P. Lin, K. A. Athanasiou, J. Biomech. Eng. 2009, 131, 061011.
dc.identifier.citedreferenceP. A. Dayton, K. E. Morgan, A. L. S. Klibanov, G. Brandenburger, K. R. Nightingale, K. W. Ferrara, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 1264.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.