Show simple item record

Modeling of Turbulent Sooting Flames

dc.contributor.authorChong, Shao Teng
dc.date.accessioned2019-02-07T17:53:27Z
dc.date.availableNO_RESTRICTION
dc.date.available2019-02-07T17:53:27Z
dc.date.issued2018
dc.date.submitted2018
dc.identifier.urihttps://hdl.handle.net/2027.42/147513
dc.description.abstractModeling multiphase particles in turbulent fluid environment is a challenging task. To accurately describe the size distribution, a large number of scalars need to be transported at each time-step. Add to that the heat release and species mass fraction changes from nonlinear combustion chemistry reactions, and you have a tightly coupled set of equations that describe the (i) turbulence, (ii) chemistry, and (iii) soot particle interactions (physical agglomeration and surface chemistry reactions). Uncertainty in any one of these models will inadvertently introduce errors of up to a few orders of magnitude in predicted soot quantities. The objective of this thesis is to investigate the effect of turbulence and chemistry on soot evolution with respect to different soot aerosol models and to develop accurate models for simulating soot evolution in aircraft combustors. To investigate the effect of small scale turbulence time-scales on soot evolution, a partially-stirred reactor (PaSR) configuration is used and coupled with soot models from semi-empirical to detailed statistical models. Differences in soot property predictions including soot particle diameter and number density among the soot models are highlighted. The soot models will then be used to simulate the turbulent sooting flame in an aircraft swirl combustor to determine the large scale soot-turbulence-chemistry interactions. Highlights of this study include the differences in location of bulk soot mass production in the combustor using different soot models. A realistic aircraft combustor operating condition is simulated using a state-of-the-art minimally dissipative turbulent combustion solver and soot method of moments to investigate pressure scaling and soot evolution in different operating conditions. A separate hydrodynamic scaling is introduced to the pressure scaling, in addition to thermochemical scaling from previous studies. Finally, a Fourier analysis of soot evolution in the combustor will be discussed. A lower sooting frequency mode is found in the combustor, separate from the dominant fluid flow frequency mode that could affect statistical data collection for soot properties in turbulent sooting flame simulations.
dc.language.isoen_US
dc.subjectsoot modeling
dc.subjectturbulent sooting flames
dc.subjectmethod of moments
dc.subjectpartially-stirred reactor
dc.subjectaircraft combustor
dc.titleModeling of Turbulent Sooting Flames
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberRaman, Venkatramanan
dc.contributor.committeememberGamba, Mirko
dc.contributor.committeememberCapecelatro, Jesse Samuel
dc.contributor.committeememberKurabayashi, Katsuo
dc.subject.hlbsecondlevelAerospace Engineering
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/147513/1/stchong_1.pdf
dc.identifier.orcid0000-0002-4072-9707
dc.identifier.name-orcidChong, Shao Teng; 0000-0002-4072-9707en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.