Show simple item record

Constraining a Historical Black Carbon Emission Inventory of the United States for 1960–2000

dc.contributor.authorSun, T.
dc.contributor.authorLiu, L.
dc.contributor.authorFlanner, M. G.
dc.contributor.authorKirchstetter, T. W.
dc.contributor.authorJiao, C.
dc.contributor.authorPreble, C. V.
dc.contributor.authorChang, W. L.
dc.contributor.authorBond, T. C.
dc.date.accessioned2019-05-31T18:26:22Z
dc.date.available2020-06-01T14:50:01Zen
dc.date.issued2019-04-16
dc.identifier.citationSun, T.; Liu, L.; Flanner, M. G.; Kirchstetter, T. W.; Jiao, C.; Preble, C. V.; Chang, W. L.; Bond, T. C. (2019). "Constraining a Historical Black Carbon Emission Inventory of the United States for 1960–2000." Journal of Geophysical Research: Atmospheres 124(7): 4004-4025.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/149266
dc.description.abstractWe present an observationally constrained United States black carbon emission inventory with explicit representation of activity and technology between 1960 and 2000. We compare measured coefficient of haze data in California and New Jersey between 1965 and 2000 with predicted concentration trends and attribute discrepancies between observations and predicted concentrations among several sources based on seasonal and weekly patterns in observations. Emission factors for sources with distinct fuel trends are then estimated by comparing fuel and concentration trends and further substantiated by in‐depth examination of emission measurements. We recommend (1) increasing emission factors for preregulation vehicles by 80–250%; (2) increasing emission factors for residential heating stoves and boilers by 70% to 200% for 1980s and before; (3) explicitly representing naturally aspired off‐road engines for 1980s and before; and (4) explicitly representing certified wood stoves after 1985. We also evaluate other possible sources for discrepancy between model and measurement, including bias in modeled meteorology, subgrid spatial heterogeneity of concentrations, and inconsistencies in reported fuel consumption. The updated U.S. emissions are higher than the a priori estimate by 80% between 1960 and 1980, totaling 690 Gg/year in 1960 and 620 Gg/year in 1970 (excluding open burning). The revised inventory shows a strongly decreasing trend that was present in the observations but missing in the a priori inventory.Key PointsSystematic evaluation of long‐term U.S. black carbon observations identifies a small number of poorly estimated emission sourcesUpdated black carbon emission is higher than the previous estimate by 80% for 1960–1980, showing a decreasing trend as found in observationEmission factors for preregulation vehicles, off‐road engines, and residential heating stoves in 1980 and before should be increased
dc.publisherBattelle Columbus Labs
dc.publisherWiley Periodicals, Inc.
dc.subject.othercoal combustion
dc.subject.otherobservations
dc.subject.otherclimate change
dc.subject.otheremission inventory
dc.subject.otherblack carbon
dc.subject.otherdiesel engine
dc.titleConstraining a Historical Black Carbon Emission Inventory of the United States for 1960–2000
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149266/1/jgrd55339_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149266/2/jgrd55339.pdf
dc.identifier.doi10.1029/2018JD030201
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceStahman, R. C., Kittredge, G. D., & Springer, K. J. ( 1968 ). Smoke and odor control for diesel‐powered trucks and buses. SAE Technical Paper. Retrieved from http://papers.sae.org/680443/
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1987 ). Household energy consumption and expenditures.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1990 ). Household energy consumption and expenditures.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1993 ). Household energy consumption and expenditures.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1997 ). Household energy consumption and expenditures.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 2001 ). Household energy consumption and expenditures.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 2010 ). State Energy Data System, 1960–2010. Retrieved October 19, 2016, from https://www.eia.gov/state/seds/seds‐data‐complete.cfm
dc.identifier.citedreferenceUS EPA ( 1988 ). Standards of performance for new residential wood heaters, Volume 53, Number 38. Retrieved from https://www.federalregister.gov/documents/2015/03/16/2015‐03733/standards‐of‐performance‐for‐new‐residential‐wood‐heaters‐new‐residential‐hydronic‐heaters‐and
dc.identifier.citedreferenceUS EPA ( 1991a ). Nonroad engine and vehicle emission study–Report. U.S. EPA. Retrieved from ftp://ftp.agl.faa.gov/OMP%20PFC%2008-21-C--00-ORD/City_Ref_Doc/13_O%27Hare%20Modernization%20Final%20Environmental%20Impact%20Statement%20-%20July%202005/Reference%20Documents/Appendix%20J/App%20J%20-%20Ref%20Doc%2075.pdf
dc.identifier.citedreferenceUS EPA ( 1991b ). SPECIATE 3.1 [Policies and guidance]. Retrieved October 26, 2016, from https://www.epa.gov/air‐emissions‐modeling/
dc.identifier.citedreferenceUS EPA ( 1993 ). Emission factor documentation for AP‐42 section 1.1 bituminous and subbituminous coal combustion. Retrieved from https://www3.epa.gov/ttnchie1/ap42/ch01/bgdocs/b01s01.pdf
dc.identifier.citedreferenceUS EPA ( 1996 ). Compilation of air pollutant emission factors (and subsequent updates),. Research Triangle Park, N. C.: U.S. Environmental Protection Agency (U.S. EPA).
dc.identifier.citedreferenceUS EPA ( 1998 ). Exhaust emission factors for nonroad engine modeling–compression‐ignition (p. 11). U.S. EPA.
dc.identifier.citedreferenceUS EPA ( 2000 ). Standards of performance for new residential wood heaters, Section 40 CFR, Part 60, Subpart AAA. Retrieved from https://www.federalregister.gov/documents/2015/03/16/2015‐03733/standards‐of‐performance‐for‐new‐residential‐wood‐heaters‐new‐residential‐hydronic‐heaters‐and
dc.identifier.citedreferenceUS EPA ( 2001 ). Code of Federal Regulations, 40 CFR Part 89. Washington, DC: U.S. Government Printing Office.
dc.identifier.citedreferenceUS EPA ( 2015 ). Air quality system. Retrieved October 19, 2015, from https://www3.epa.gov/ttn/airs/airsaqs/
dc.identifier.citedreferenceWang, H., Chen, C., Huang, C., & Fu, L. ( 2008 ). On‐road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Science of the Total Environment, 398 ( 1‐3 ), 60 – 67. https://doi.org/10.1016/j.scitotenv.2008.01.038
dc.identifier.citedreferenceWang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., Marais, E. A., Ge, C., Wang, J., & Barrett, S. R. H. ( 2014 ). Global budget and radiative forcing of black carbon aerosol: Constraints from pole‐to‐pole (HIPPO) observations across the Pacific. Journal of Geophysical Research: Atmospheres, 119, 195 – 206. https://doi.org/10.1002/2013JD020824
dc.identifier.citedreferenceWang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., Piao, S., Shen, H., Vuolo, M. R., Valari, M., Chen, H., Chen, Y., Cozic, A., Huang, Y., Li, B., Li, W., Shen, G., Wang, B., & Zhang, Y. ( 2014 ). Exposure to ambient black carbon derived from a unique inventory and high‐resolution model. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 7 ), 2459 – 2463. https://doi.org/10.1073/pnas.1318763111
dc.identifier.citedreferenceWang, X., Westerdahl, D., Chen, L. C., Wu, Y., Hao, J., Pan, X., Guo, X., & Zhang, K. M. ( 2009 ). Evaluating the air quality impacts of the 2008 Beijing Olympic games: On‐road emission factors and black carbon profiles. Atmospheric Environment, 43 ( 30 ), 4535 – 4543. https://doi.org/10.1016/j.atmosenv.2009.06.054
dc.identifier.citedreferenceWang, Y., McElroy, M. B., Wang, T., & Palmer, P. I. ( 2004 ). Asian emissions of CO and NO x: Constraints from aircraft and Chinese station data. Journal of Geophysical Research, 109, D24304. Retrieved from. https://doi.org/10.1029/2004JD005250/full
dc.identifier.citedreferenceWang, Y., Wang, X., Kondo, Y., Kajino, M., Munger, J. W., & Hao, J. ( 2011 ). Black carbon and its correlation with trace gases at a rural site in Beijing: Top‐down constraints from ambient measurements on bottom‐up emissions. Journal of Geophysical Research, 116, D24304. https://doi.org/10.1029/2011JD016575
dc.identifier.citedreferenceWeilenmann, M., Favez, J.‐Y., & Alvarez, R. ( 2009 ). Cold‐start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment, 43 ( 15 ), 2419 – 2429. https://doi.org/10.1016/j.atmosenv.2009.02.005
dc.identifier.citedreferenceWesterdahl, D., Wang, X., Pan, X., & Zhang, K. M. ( 2009 ). Characterization of on‐road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environment, 43 ( 3 ), 697 – 705. https://doi.org/10.1016/j.atmosenv.2008.09.042
dc.identifier.citedreferenceWilliams, D. J., Milne, J. W., Roberts, D. B., & Kimberlee, M. C. ( 1989 ). Particulate emissions from ‘in‐use’ motor vehicles—I. Spark ignition vehicles. Atmospheric Environment (1967), 23 ( 12 ), 2639 – 2645. https://doi.org/10.1016/0004‐6981(89)90544‐1
dc.identifier.citedreferenceWolff, G. T., Stroup, C. M., & Stroup, D. P. ( 1983 ). The coefficient of haze as a measure of particulate elemental carbon. Journal of the Air Pollution Control Association, 33 ( 8 ), 746 – 750. https://doi.org/10.1080/00022470.1983.10465635
dc.identifier.citedreferenceWu, Y., Wang, R., Zhou, Y., Lin, B., Fu, L., He, K., & Hao, J. ( 2010 ). On‐road vehicle emission control in Beijing: Past, present, and future. Environmental Science & Technology. Retrieved from, 45 ( 1 ), 147 – 153. https://doi.org/10.1021/es1014289
dc.identifier.citedreferenceYan, F., Winijkul, E., Jung, S., Bond, T. C., & Streets, D. G. ( 2011 ). Global emission projections of particulate matter (PM): I. Exhaust emissions from on‐road vehicles. Atmospheric Environment, 45 ( 28 ), 4830 – 4844. https://doi.org/10.1016/j.atmosenv.2011.06.018
dc.identifier.citedreferenceYanowitz, J., Graboski, M. S., Ryan, L. B., Alleman, T. L., & McCormick, R. L. ( 1999 ). Chassis dynamometer study of emissions from 21 in‐use heavy‐duty diesel vehicles. Environmental Science & Technology, 33 ( 2 ), 209 – 216. https://doi.org/10.1021/es980458p
dc.identifier.citedreferenceYanowitz, J., McCormick, R. L., & Graboski, M. S. ( 2000 ). In‐use emissions from heavy‐duty diesel vehicles. Environmental Science & Technology, 34 ( 5 ), 729 – 740. https://doi.org/10.1021/es990903w
dc.identifier.citedreferenceAllen, G. A., Lawrence, J., & Koutrakis, P. ( 1999 ). Field validation of a semi‐continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmospheric Environment, 33 ( 5 ), 817 – 823. https://doi.org/10.1016/S1352‐2310(98)00142‐3
dc.identifier.citedreferenceBahadur, R., Feng, Y., Russell, L. M., & Ramanathan, V. ( 2011 ). Impact of California’s air pollution laws on black carbon and their implications for direct radiative forcing. Atmospheric Environment, 45 ( 5 ), 1162 – 1167. https://doi.org/10.1016/j.atmosenv.2010.10.054
dc.identifier.citedreferenceBan‐Weiss, G. A., McLaughlin, J. P., Harley, R. A., Lunden, M. M., Kirchstetter, T. W., Kean, A. J., Strawa, A. W., Stevenson, E. D., & Kendall, G. R. ( 2008 ). Long‐term changes in emissions of nitrogen oxides and particulate matter from on‐road gasoline and diesel vehicles. Atmospheric Environment, 42 ( 2 ), 220 – 232. https://doi.org/10.1016/j.atmosenv.2007.09.049
dc.identifier.citedreferenceBarrett, R. E., Miller, S. E., & Locklin, D. W. ( 1973 ). Field investigation of emissions from combustion equipment for space heating. Ohio (USA). Retrieved from: Battelle Columbus Labs. http://www.osti.gov/scitech/biblio/5135993
dc.identifier.citedreferenceBennink, C. ( 2015 ). 50 years of construction equipment history: Five decades of diesel engine evolution. Retrieved October 25, 2016, from http://www.forconstructionpros.com/article/12094916/50‐years‐of‐construction‐equipment‐history‐five‐decades‐of‐diesel‐engine‐evolution
dc.identifier.citedreferenceBergstrom, R. W., Russell, P. B., & Hignett, P. ( 2002 ). Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo. Journal of the Atmospheric Sciences, 59 ( 3 ), 567 – 577. https://doi.org/10.1175/1520‐0469(2002)059<0567:WDOTAO>2.0.CO;2
dc.identifier.citedreferenceBond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., et al. ( 2007 ). Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000. Global Biogeochemical Cycles, 21, GB2018. https://doi.org/10.1029/2006GB002840
dc.identifier.citedreferenceBond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.‐H., & Klimont, Z. ( 2004 ). A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109, D14203. https://doi.org/10.1029/2003JD003697
dc.identifier.citedreferenceBond, T. C., Zarzycki, C., Flanner, M. G., & Koch, D. M. ( 2011 ). Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse. Atmospheric Chemistry and Physics, 11 ( 4 ), 1505 – 1525. https://doi.org/10.5194/acp‐11‐1505‐2011
dc.identifier.citedreferenceBrasseur, G. P., & Jacob, D. J. ( 2013 ). In Mathematical Modeling of Atmospheric Chemistry (Vol. 11, pp. 487 – 533 ).
dc.identifier.citedreferenceBroderick, D. R., Houck, J. E., Crouch, J., & Goldman, J. ( 2005 ). Review of residential wood combustion data for mid‐Atlantic and New England states. Presented at the Proceedings of 14 Th International Emission Inventory Conference, Transforming Emission Inventories–Meeting Future Challenges Today, Las Vegas, Nevada. Retrieved from http://www.rumford.com/woodburningregulation/literature/broderick2.pdf
dc.identifier.citedreferenceButcher, S. S., & Ellenbecker, M. J. ( 1982 ). Particulate emission factors for small wood and coal stoves. Journal of the Air Pollution Control Association, 32 ( 4 ), 380 – 384. https://doi.org/10.1080/00022470.1982.10465413
dc.identifier.citedreferenceCadle, S. H., Mulawa, P. A., Hunsanger, E. C., Nelson, K., Ragazzi, R. A., Barrett, R., Gallagher, G. L., Lawson, D. R., Knapp, K. T., & Snow, R. ( 1999 ). Composition of light‐duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environmental Science & Technology, 33 ( 14 ), 2328 – 2339. https://doi.org/10.1021/es9810843
dc.identifier.citedreferenceCadle, S. H., Nebel, G. J., & Williams, R. L. ( 1979 ). Measurements of unregulated emissions from General Motors’ light‐duty vehicles. SAE Technical Paper. Retrieved from http://papers.sae.org/790694/
dc.identifier.citedreferenceCalifornia Air Resources Board. California Air Quality Data ( 2014 ). Retrieved June 24, 2014 from www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
dc.identifier.citedreferenceCalifornia Department of Transportation ( 2000 ). Performance Measurement System (PeMS). Retrieved October 13, 2016, from http://pems.dot.ca.gov
dc.identifier.citedreferenceCanagaratna, M. R., Jayne, J. T., Ghertner, D. A., Herndon, S., Shi, Q., Jimenez, J. L., Silva, P. J., Williams, P., Lanni, T., Drewnick, F., Demerjian, K. L., Kolb, C. E., & Worsnop, D. R. ( 2004 ). Chase studies of particulate emissions from in‐use New York City vehicles. Aerosol Science and Technology, 38 ( 6 ), 555 – 573. https://doi.org/10.1080/02786820490465504
dc.identifier.citedreferenceCarcaillet, C., Almquist, H., Asnong, H., Bradshaw, R., Carrion, J., Gaillard, M.‐J., et al. ( 2002 ). Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere, 49 ( 8 ), 845 – 863. https://doi.org/10.1016/S0045‐6535(02)00385‐5
dc.identifier.citedreferenceCharlson, R. J., & Pilat, M. J. ( 1969 ). Climate: The influence of aerosols. Journal of Applied Meteorology, 8 ( 6 ), 1001 – 1002. https://doi.org/10.1175/1520‐0450(1969)008<1001:CTIOA>2.0.CO;2
dc.identifier.citedreferenceChen, Y., & Bond, T. C. ( 2010 ). Light absorption by organic carbon from wood combustion. Atmospheric Chemistry and Physics, 10 ( 4 ), 1773 – 1787. https://doi.org/10.5194/acp‐10‐1773‐2010
dc.identifier.citedreferenceChung, S. H. ( 2005 ). Climate response of direct radiative forcing of anthropogenic black carbon. Journal of Geophysical Research, 110, D11102. https://doi.org/10.1029/2004JD005441
dc.identifier.citedreferenceChỳlek, P., Ramaswamy, V., & Srivastava, V. ( 1983 ). Albedo of soot‐contaminated snow. Journal of Geophysical Research, 88 ( C15 ), 10837 – 10,843. https://doi.org/10.1029/JC088iC15p10837
dc.identifier.citedreferenceCochrane, M. A. ( 2003 ). Fire science for rainforests. Nature, 421 ( 6926 ), 913 – 919. https://doi.org/10.1038/nature01437
dc.identifier.citedreferenceCofala, J., Amann, M., Klimont, Z., Kupiainen, K., & Höglund‐Isaksson, L. ( 2007 ). Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 41 ( 38 ), 8486 – 8499. https://doi.org/10.1016/j.atmosenv.2007.07.010
dc.identifier.citedreferenceCooke, W. F., & Wilson, J. J. N. ( 1996 ). A global black carbon aerosol model. Journal of Geophysical Research, 101 ( D14 ), 19395 – 19409. https://doi.org/10.1029/96JD00671
dc.identifier.citedreferenceDallmann, T., Onasch, T., Kirchstetter, T., Worton, D., Fortner, E., Herndon, S., et al. ( 2014 ). Characterization of particulate matter emissions from on‐road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 14 ( 14 ), 7585 – 7599. https://doi.org/10.5194/acp‐14‐7585‐2014
dc.identifier.citedreferenceDickerson, R. R., Andreae, M. O., Campos, T., Mayol‐Bracero, O. L., Neusuess, C., & Streets, D. G. ( 2002 ). Analysis of black carbon and carbon monoxide observed over the Indian Ocean: Implications for emissions and photochemistry. Journal of Geophysical Research, 107 ( D19 ), 8017. https://doi.org/10.1029/2001JD000501
dc.identifier.citedreferenceDreher, D. B., & Harley, R. A. ( 1998 ). A fuel‐based inventory for heavy‐duty diesel truck emissions. Journal of the Air & Waste Management Association, 48 ( 4 ), 352 – 358. https://doi.org/10.1080/10473289.1998.10463686
dc.identifier.citedreferenceDubovik, O., Lapyonok, T., Kaufman, Y. J., Chin, M., Ginoux, P., Kahn, R. A., & Sinyuk, A. ( 2008 ). Retrieving global aerosol sources from satellites using inverse modeling. Atmospheric Chemistry and Physics, 8 ( 2 ), 209 – 250. https://doi.org/10.5194/acp‐8‐209‐2008
dc.identifier.citedreferenceDurbin, T. D., Norbeck, J. M., Smith, M. R., & Truex, T. J. ( 1999 ). Particulate emission rates from light‐duty vehicles in the south coast air quality management district. Environmental Science & Technology, 33 ( 24 ), 4401 – 4406. https://doi.org/10.1021/es9902470
dc.identifier.citedreferenceFernandes, S. D., Trautmann, N. M., Streets, D. G., Roden, C. A., & Bond, T. C. ( 2007 ). Global biofuel use, 1850–2000. Global Biogeochemical Cycles, 21, GB2019. https://doi.org/10.1029/2006gb002836
dc.identifier.citedreferenceFine, P. M., Cass, G. R., & Simoneit, B. R. ( 2004 ). Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environmental Engineering Science, 21 ( 6 ), 705 – 721. https://doi.org/10.1089/ees.2004.21.705
dc.identifier.citedreferenceFlanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. ( 2007 ). Present‐day climate forcing and response from black carbon in snow. Journal of Geophysical Research, 112, D11202. https://doi.org/10.1029/2006JD008003
dc.identifier.citedreferenceFraser, M., Buzcu, B., Yue, Z., McGaughey, G., Desai, N., Allen, D., et al. ( 2003 ). Separation of fine particulate matter emitted from gasoline and diesel vehicles using chemical mass balancing techniques. Environmental Science & Technology, 37 ( 17 ), 3904 – 3909. https://doi.org/10.1021/es034167e
dc.identifier.citedreferenceGeller, M. D., Sardar, S. B., Phuleria, H., Fine, P. M., & Sioutas, C. ( 2005 ). Measurements of particle number and mass concentrations and size distributions in a tunnel environment. Environmental Science & Technology, 39 ( 22 ), 8653 – 8663. https://doi.org/10.1021/es050360s
dc.identifier.citedreferenceGentner, D. R., Worton, D. R., Isaacman, G., Davis, L. C., Dallmann, T. R., Wood, E. C., Herndon, S. C., Goldstein, A. H., & Harley, R. A. ( 2013 ). Chemical composition of gas‐phase organic carbon emissions from motor vehicles and implications for ozone production. Environmental Science & Technology, 47 ( 20 ), 11837 – 11848. https://doi.org/10.1021/es401470e
dc.identifier.citedreferenceGeroski, P. A. ( 2000 ). Models of technology diffusion. Research Policy, 29 ( 4‐5 ), 603 – 625. https://doi.org/10.1016/S0048‐7333(99)00092‐X
dc.identifier.citedreferenceGertler, A. W., & Gillies, J. ( 2002 ). Emissions from diesel and gasoline engines measured in highway tunnels. Research and Reports, 107.
dc.identifier.citedreferenceGillies, J. A., & Gertler, A. W. ( 2000 ). Comparison and evaluation of chemically speciated mobile source PM2. 5 particulate matter profiles. Journal of the Air & Waste Management Association, 50 ( 8 ), 1459 – 1480. https://doi.org/10.1080/10473289.2000.10464186
dc.identifier.citedreferenceGlen, W. G., Zelenka, M. P., & Graham, R. C. ( 1996 ). Relating meteorological variables and trends in motor vehicle emissions to monthly urban carbon monoxide concentrations. Atmospheric Environment, 30 ( 24 ), 4225 – 4232. https://doi.org/10.1016/1352‐2310(96)00130‐6
dc.identifier.citedreferenceGrell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. ( 2005 ). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39 ( 37 ), 6957 – 6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
dc.identifier.citedreferenceGrieshop, A. P., Lipsky, E. M., Pekney, N. J., Takahama, S., & Robinson, A. L. ( 2006 ). Fine particle emission factors from vehicles in a highway tunnel: Effects of fleet composition and season. Atmospheric Environment, 40, 287 – 298. https://doi.org/10.1016/j.atmosenv.2006.03.064
dc.identifier.citedreferenceGrübler, A., Nakićenović, N., & Victor, D. G. ( 1999 ). Dynamics of energy technologies and global change. Energy Policy, 27 ( 5 ), 247 – 280. https://doi.org/10.1016/S0301‐4215(98)00067‐6
dc.identifier.citedreferenceGullett, B. K., Touati, A., & Hays, M. D. ( 2003 ). PCDD/F, PCB, HxCBz, PAH, and PM emission factors for fireplace and woodstove combustion in the San Francisco Bay region. Environmental Science & Technology, 37 ( 9 ), 1758 – 1765. https://doi.org/10.1021/es026373c
dc.identifier.citedreferenceHakami, A., Henze, D. K., Seinfeld, J. H., Chai, T., Tang, Y., Carmichael, G. R., & Sandu, A. ( 2005 ). Adjoint inverse modeling of black carbon during the Asian Pacific regional aerosol characterization experiment. Journal of Geophysical Research, 110, D14301. https://doi.org/10.1029/2004JD005671
dc.identifier.citedreferenceHansen, A., Rosen, H., & Novakov, T. ( 1984 ). The aethalometer—An instrument for the real‐time measurement of optical absorption by aerosol particles. Science of the Total Environment, 36, 191 – 196. https://doi.org/10.1016/0048‐9697(84)90265‐1
dc.identifier.citedreferenceHansen, J., & Nazarenko, L. ( 2004 ). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 2 ), 423 – 428. https://doi.org/10.1073/pnas.2237157100
dc.identifier.citedreferenceHansen, J., & Sato, M. ( 2001 ). Trends of measured climate forcing agents. Proceedings of the National Academy of Sciences, 98 ( 26 ), 14778 – 14783. https://doi.org/10.1073/pnas.261553698
dc.identifier.citedreferenceHansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. ( 2000 ). Global warming in the twenty‐first century: An alternative scenario. Proceedings of the National Academy of Sciences, 97 ( 18 ), 9875 – 9880. https://doi.org/10.1073/pnas.170278997
dc.identifier.citedreferenceHansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., et al. ( 2005 ). Efficacy of climate forcings. Journal of Geophysical Research, 110, D18104. https://doi.org/10.1029/2005JD005776
dc.identifier.citedreferenceHemeon, W., Haines, G. F. Jr., & Ide, H. M. ( 1953 ). Determination of haze and smoke concentrations by filter paper samplers. Air Repair, 3 ( 1 ), 22 – 28. https://doi.org/10.1080/00966665.1953.10467585
dc.identifier.citedreferenceHildemann, L. M., Markowski, G. R., & Cass, G. R. ( 1991 ). Chemical composition of emissions from urban sources of fine organic aerosol. Environmental Science & Technology, 25 ( 4 ), 744 – 759. https://doi.org/10.1021/es00016a021
dc.identifier.citedreferenceHouck, J. E., Pitzman, L. Y., & Tiegs, P. ( 2008 ). Emission factors for new certified residential wood heaters. In Proceedings of the 17th International Emission Inventory Conference, Inventory Evaluation‐Portal to Improved Air Quality (pp. 3–5). Retrieved from https://www3.epa.gov/ttnchie1/conference/ei17/session4/houck.pdf
dc.identifier.citedreferenceHouck, J. E., & Tiegs, P. E. ( 1998 ). Residential wood combustion technology review: Volume 1. Final technical report, July 1997–July 1998. OMNI Environmental Services, Inc., Beaverton, OR (United States); Environmental Protection Agency, air pollution prevention and control div., research Triangle Park, NC (United States). Retrieved from http://www.osti.gov/scitech/biblio/339579
dc.identifier.citedreferenceHu, Y., Odman, M. T., & Russell, A. G. ( 2009 ). Top‐down analysis of the elemental carbon emissions inventory in the United States by inverse modeling using community multiscale air quality model with decoupled direct method (CMAQ‐DDM). Journal of Geophysical Research, 114, D24302. Retrieved from. https://doi.org/10.1029/2009JD011987/full
dc.identifier.citedreferenceHughes, T. W., & DeAngelis, D. G. ( 1982 ). Emissions from coal‐fired residential combustion equipment. In 1981 International Conference on Residential Solid Fuels (pp. 333–348).
dc.identifier.citedreferenceInternational Energy Agency ( 2004a ). Energy statistics of non‐OECD countries, 1971–2002, report. Paris.
dc.identifier.citedreferenceInternational Energy Agency ( 2004b ). Energy statistics of OECD countries,1960–2002, report. Paris.
dc.identifier.citedreferenceJääskeläinen, H., & Khair, M. K. ( 2012 ). Charge air cooling. Retrieved October 25, 2016, from https://www.dieselnet.com/tech/air_cool.php
dc.identifier.citedreferenceJaasma, D. R., & Macumber, D. W. ( 1982 ). Measurement techniques and emission factors for hand‐fired coal stoves. Residential Wood and Coal Combustion, 129, 150.
dc.identifier.citedreferenceJacobson, M. Z. ( 2001 ). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409 ( 6821 ), 695 – 697. https://doi.org/10.1038/35055518
dc.identifier.citedreferenceJacobson, M. Z. ( 2002 ). Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research, 107 ( D19 ), 4410. https://doi.org/10.1029/2001JD001376
dc.identifier.citedreferenceJacobson, M. Z. ( 2004 ). Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. Journal of Geophysical Research, 109, D21201. https://doi.org/10.1029/2004JD004945
dc.identifier.citedreferenceJohnson, B. T., Shine, K. P., & Forster, P. M. ( 2004 ). The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quarterly Journal of the Royal Meteorological Society, 130 ( 599 ), 1407 – 1422. https://doi.org/10.1256/qj.03.61
dc.identifier.citedreferenceKaynakli, O. ( 2008 ). A study on residential heating energy requirement and optimum insulation thickness. Renewable Energy, 33 ( 6 ), 1164 – 1172. https://doi.org/10.1016/j.renene.2007.07.001
dc.identifier.citedreferenceKean, A. J., Sawyer, R. F., & Harley, R. A. ( 2000 ). A fuel‐based assessment of off‐road diesel engine emissions. Journal of the Air & Waste Management Association (1995), 50 ( 11 ), 1929 – 1939. https://doi.org/10.1080/10473289.2000.10464233
dc.identifier.citedreferenceKirchstetter, T. W., Aguiar, J., Tonse, S., Fairley, D., & Novakov, T. ( 2008 ). Black carbon concentrations and diesel vehicle emission factors derived from coefficient of haze measurements in California: 1967–2003. Atmospheric Environment, 42 ( 3 ), 480 – 491. https://doi.org/10.1016/j.atmosenv.2007.09.063
dc.identifier.citedreferenceKirchstetter, T. W., Novakov, T., & Hobbs, P. V. ( 2004 ). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research, 109, D21208. https://doi.org/10.1029/2004JD004999
dc.identifier.citedreferenceKirchstetter, T. W., Preble, C. V., Hadley, O. L., Bond, T. C., & Apte, J. S. ( 2017 ). Large reductions in urban black carbon concentrations in the United States between 1965 and 2000. Atmospheric Environment, 151, 17 – 23. https://doi.org/10.1016/j.atmosenv.2016.11.001
dc.identifier.citedreferenceKlimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken‐Kleefeld, J., & Schöpp, W. ( 2016 ). Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics Discussions, Retrieved from, 1 – 72. http://www.atmos‐chem‐phys‐discuss.net/acp‐2016‐880/acp‐2016‐880.pdf, https://doi.org/10.5194/acp‐2016‐880
dc.identifier.citedreferenceKoch, D., Menon, S., Del Genio, A., Ruedy, R., Alienov, I., & Schmidt, G. A. ( 2009 ). Distinguishing aerosol impacts on climate over the past century. Journal of Climate, 22 ( 10 ), 2659 – 2677. https://doi.org/10.1175/2008JCLI2573.1
dc.identifier.citedreferenceKoch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., de Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen, T., Kirkev&aring;g, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., & Zhao, Y. ( 2009 ). Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 9 ( 22 ), 9001 – 9026. https://doi.org/10.5194/acp‐9‐9001‐2009
dc.identifier.citedreferenceKopacz, M., Jacob, D. J., Henze, D. K., Heald, C. L., Streets, D. G., & Zhang, Q. ( 2009 ). Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns. Journal of Geophysical Research, 114, D04305. Retrieved from. https://doi.org/10.1029/2007JD009264/full
dc.identifier.citedreferenceLack, D., Lerner, B., Granier, C., Baynard, T., Lovejoy, E., Massoli, P., Ravishankara, A. R., & Williams, E. ( 2008 ). Light absorbing carbon emissions from commercial shipping. Geophysical Research Letters, 35, L13815. https://doi.org/10.1029/2008GL033906
dc.identifier.citedreferenceLamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., & van Vuuren, D. P. ( 2010 ). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10 ( 15 ), 7017 – 7039. https://doi.org/10.5194/acp‐10‐7017‐2010
dc.identifier.citedreferenceLang, J. M., Snow, L., Carlson, R., Black, F., Zweidinger, R., & Tejada, S. ( 1981 ). Characterization of particulate emissions from in‐use gasoline‐fueled motor vehicles. SAE Technical Paper. Retrieved from http://papers.sae.org/811186/
dc.identifier.citedreferenceLloyd, A. C., & Cackette, T. A. ( 2001 ). Diesel engines: Environmental impact and control. Journal of the Air & Waste Management Association (1995), 51 ( 6 ), 809 – 847. https://doi.org/10.1080/10473289.2001.10464315
dc.identifier.citedreferenceMalm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., & Cahill, T. A. ( 1994 ). Spatial and seasonal trends in particle concentration and optical extinction in the United States. Journal of Geophysical Research, 99 ( D1 ), 1347 – 1370. https://doi.org/10.1029/93JD02916
dc.identifier.citedreferenceMay, A. A., Nguyen, N. T., Presto, A. A., Gordon, T. D., Lipsky, E. M., Karve, M., Gutierrez, A., Robertson, W. H., Zhang, M., Brandow, C., Chang, O., Chen, S., Cicero‐Fernandez, P., Dinkins, L., Fuentes, M., Huang, S. M., Ling, R., Long, J., Maddox, C., Massetti, J., McCauley, E., Miguel, A., Na, K., Ong, R., Pang, Y., Rieger, P., Sax, T., Truong, T., Vo, T., Chattopadhyay, S., Maldonado, H., Maricq, M. M., & Robinson, A. L. ( 2014 ). Gas‐and particle‐phase primary emissions from in‐use, on‐road gasoline and diesel vehicles. Atmospheric Environment, 88, 247 – 260. https://doi.org/10.1016/j.atmosenv.2014.01.046
dc.identifier.citedreferenceMcDonald, B. C., Goldstein, A. H., & Harley, R. A. ( 2015 ). Long‐term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol. Environmental Science & Technology, 49 ( 8 ), 5178 – 5188. https://doi.org/10.1021/es505912b
dc.identifier.citedreferenceMcDonald, B. C., McBride, Z. C., Martin, E. W., & Harley, R. A. ( 2014 ). High‐resolution mapping of motor vehicle carbon dioxide emissions. Journal of Geophysical Research: Atmospheres, 119, 5283 – 5298. https://doi.org/10.1002/2013JD021219
dc.identifier.citedreferenceMenon, S., Hansen, J., Nazarenko, L., & Luo, Y. ( 2002 ). Climate effects of black carbon aerosols in China and India. Science, 297 ( 5590 ), 2250 – 2253. https://doi.org/10.1126/science.1075159
dc.identifier.citedreferenceModern‐era retrospective analysis for research and applications (MERRA). National Aeronautics and Space Administration ( 2014 ). Planetary Boundary Layer Data, 1979–2005. Retrieved October 20, 2014, from http://giovanni.gsfc.nasa.gov/giovanni/
dc.identifier.citedreferenceNeale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., et al. ( 2010 ). Description of the NCAR community atmosphere model (CAM 4.0). NCAR Tech. Note NCAR/TN‐486+ STR, 1 ( 1 ).
dc.identifier.citedreferenceNew Jersey Department of Environmental Protection ( 2014 ). Coefficient of haze data. Retrieved June 24, 2014, from http://www.njaqinow.net/
dc.identifier.citedreferenceNOAA National Centers for Environmental information ( 2018 ). Climate at a glance: Statewide mapping. Retrieved June 24, 2018, from https://www.ncdc.noaa.gov/cag/
dc.identifier.citedreferenceNOAA National Climate Data Center ( 2013 ). Degree Days Statistics Retrieved October 20, 2013, from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/
dc.identifier.citedreferenceNovakov, T., & Hansen, J. ( 2004 ). Black carbon emissions in the United Kingdom during the past four decades: An empirical analysis. Atmospheric Environment, 38 ( 25 ), 4155 – 4163. https://doi.org/10.1016/j.atmosenv.2004.04.031
dc.identifier.citedreferenceNovakov, T., Ramanathan, V., Hansen, J., Kirchstetter, T., Sato, M., Sinton, J., & Sathaye, J. ( 2003 ). Large historical changes of fossil‐fuel black carbon aerosols. Geophysical Research Letters, 30 ( 6 ), 1324. https://doi.org/10.1029/2002GL016345
dc.identifier.citedreferenceOffen, G. R., Management, U. S. E. P. A. O. of A. and W., Standards, U. S. E. P. A. O. of A. Q. P, & Corporation, A ( 1976 ). Control of particulate matter from oil burners and boilers. U.S. Environmental Protection Agency, Office of Air and Waste Management, Office of Air Quality Planning and Standards.
dc.identifier.citedreferencePalmer, P. I., Jacob, D. J., Jones, D. B. A., Heald, C. L., Yantosca, R. M., Logan, J. A., et al. ( 2003 ). Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific. Journal of Geophysical Research, 108 ( D21 ), 8828. https://doi.org/10.1029/2003JD003397
dc.identifier.citedreferencePark, R. J. ( 2003 ). Sources of carbonaceous aerosols over the United States and implications for natural visibility. Journal of Geophysical Research, 108 ( D12 ), 4355. https://doi.org/10.1029/2002JD003190
dc.identifier.citedreferencePenner, J. E., Eddleman, H., & Novakov, T. ( 1993 ). Towards the development of a global inventory for black carbon emissions. Atmospheric Environment. Part A. General Topics, 27 ( 8 ), 1277 – 1295. https://doi.org/10.1016/0960‐1686(93)90255‐W
dc.identifier.citedreferencePettitt, J. ( 2004 ). Sport compact turbos & blowers. Forest Lake, MN: CarTech Inc.
dc.identifier.citedreferencePierson, W. R., & Brachaczek, W. W. ( 1982 ). Particulate matter associated with vehicles on the road. II. Aerosol Science and Technology, 2 ( 1 ), 1 – 40. https://doi.org/10.1080/02786828308958610
dc.identifier.citedreferencePierson, W. R., Gertler, A. W., Robinson, N. F., Sagebiel, J. C., Zielinska, B., Bishop, G. A., Stedman, D. H., Zweidinger, R. B., & Ray, W. D. ( 1996 ). Real‐world automotive emissions—Summary of studies in the Fort McHenry and Tuscarora Mountain tunnels. Atmospheric Environment, 30 ( 12 ), 2233 – 2256. https://doi.org/10.1016/1352‐2310(95)00276‐6
dc.identifier.citedreferenceQuayle, R. G., & Diaz, H. F. ( 1980 ). Heating degree day data applied to residential heating energy consumption. Journal of Applied Meteorology, 19 ( 3 ), 241 – 246. https://doi.org/10.1175/1520‐0450(1980)019<0241:HDDDAT>2.0.CO;2
dc.identifier.citedreferenceRamanathan, V., & Carmichael, G. ( 2008 ). Global and regional climate changes due to black carbon. Nature Geoscience, 1 ( 4 ), 221 – 227. https://doi.org/10.1038/ngeo156
dc.identifier.citedreferenceRiemer, N., West, M., Zaveri, R. A., & Easter, R. C. ( 2009 ). Simulating the evolution of soot mixing state with a particle‐resolved aerosol model. Journal of Geophysical Research, 114, D09202. https://doi.org/10.1029/2008JD011073
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: theory and practice (Vol. 2). World scientific. Retrieved from https://books.google.com/books?hl=en&lr=&id=Xv7sCgAAQBAJ&oi=fnd&pg=PR7&dq=Inverse+Methods+for+Atmospheric+Sounding:+Theory+and+Practice,+World+Sci.,+River+Edge,+N.+J.&ots=e7rwXbFf0c&sig=vec04MVYAKetmMC5jk3mmqu_Fn8
dc.identifier.citedreferenceRogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. ( 1993 ). Sources of fine organic aerosol. 2. Noncatalyst and catalyst‐equipped automobiles and heavy‐duty diesel trucks. Environmental Science & Technology, 27 ( 4 ), 636 – 651. https://doi.org/10.1021/es00041a007
dc.identifier.citedreferenceRosen, H., Hansen, A. D. A., Gundel, L., & Novakov, T. ( 1978 ). Identification of the optically absorbing component in urban aerosols. Applied Optics, 17 ( 24 ), 3859 – 3861. https://doi.org/10.1364/AO.17.003859
dc.identifier.citedreferenceSanborn, C. R., & Montpelier, V. ( 1982 ). Characterization of emissions from residential coal stoves. In Proceedings of the Residential Wood and Coal Combustion Specialty Conference (pp. 151–160).
dc.identifier.citedreferenceSanter, B. D., Taylor, K., Wigley, T. L., Penner, J., Jones, P., & Cubasch, U. ( 1995 ). Towards the detection and attribution of an anthropogenic effect on climate. Climate Dynamics, 12 ( 2 ), 77 – 100. https://doi.org/10.1007/BF00223722
dc.identifier.citedreferenceSchulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., & Takemura, T. ( 2006 ). Radiative forcing by aerosols as derived from the AeroCom present‐day and pre‐industrial simulations. Atmospheric Chemistry and Physics, 6 ( 12 ), 5225 – 5246. https://doi.org/10.5194/acp‐6‐5225‐2006
dc.identifier.citedreferenceSeiler, W., & Crutzen, P. J. ( 1980 ). Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2 ( 3 ), 207 – 247. https://doi.org/10.1007/BF00137988
dc.identifier.citedreferenceShah, S. D., Cocker, D. R., Miller, J. W., & Norbeck, J. M. ( 2004 ). Emission rates of particulate matter and elemental and organic carbon from in‐use diesel engines. Environmental Science & Technology, 38 ( 9 ), 2544 – 2550. https://doi.org/10.1021/es0350583
dc.identifier.citedreferenceSmit, R., Ntziachristos, L., & Boulter, P. ( 2010 ). Validation of road vehicle and traffic emission models–A review and meta‐analysis. Atmospheric Environment, 44 ( 25 ), 2943 – 2953. https://doi.org/10.1016/j.atmosenv.2010.05.022
dc.identifier.citedreferenceSmith, S. J., Wigley, T. M. L., & Edmonds, J. ( 2000 ). A new route toward limiting climate change? Science, 290 ( 5494 ), 1109 – 1110. https://doi.org/10.1126/science.290.5494.1109
dc.identifier.citedreferenceSpringer, K. J., White, J. T., & Domke, C. J. ( 1974 ). Emissions from in‐use 1970–1971 diesel‐powered trucks and buses. SAE Technical Paper. Retrieved from http://papers.sae.org/741006/
dc.identifier.citedreferenceStohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., & Novigatsky, A. N. ( 2013 ). Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics, 13 ( 17 ), 8833 – 8855. https://doi.org/10.5194/acp‐13‐8833‐2013
dc.identifier.citedreferenceStreets, D. G., Bond, T. C., Lee, T., & Jang, C. ( 2004 ). On the future of carbonaceous aerosol emissions. Journal of Geophysical Research, 109, D24212. Retrieved from. https://doi.org/10.1029/2004JD004902/full
dc.identifier.citedreferenceSubramanian, R., Winijkul, E., Bond, T. C., Thiansathit, W., Oanh, N. T. K., Paw‐Armart, I., & Duleep, K. G. ( 2009 ). Climate‐relevant properties of diesel particulate emissions: Results from a piggyback study in Bangkok, Thailand. Environmental Science & Technology, 43 ( 11 ), 4213 – 4218. https://doi.org/10.1021/es8032296
dc.identifier.citedreferenceSwab, C. ( 2015 ). 2014 Portland Oregon residential wood combustion survey: Survey results summary and PM2.5 emissions estimates. Presented at the 2015 International Emission Inventory Conference, San Diego, California.
dc.identifier.citedreferenceTiegs, P. E., & Houck, J. E. ( 2000 ). Evaluation of the northern Sonoma County wood‐burning fireplace and masonry heater emissions testing protocols, prepared for northern Sonoma County air quality Management District by OMNI environmental services. Inc, Beaverton, OR.
dc.identifier.citedreferenceTruesdale, R. S., & Cleland, J. G. ( 1982 ). Residential stove emissions from coal and other alternative fuels combustion. Residential Wood and Coal Combustion, 115 – 128.
dc.identifier.citedreferenceUnited Nations Statistics Division ( 1995 ). United Nations Energy Statistics, 1950–1995. New York.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1981 ). Household energy consumption and expenditures.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1982 ). Estimates of U.S. wood consumption from 1949 to 1981.
dc.identifier.citedreferenceUS Energy Information Administration (US EIA) ( 1984 ). Household energy consumption and expenditures.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.