Show simple item record

Local temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide

dc.contributor.authorBeaudrot, Lydia
dc.contributor.authorAcevedo, Miguel A.
dc.contributor.authorLessard, Jean‐philippe
dc.contributor.authorZvoleff, Alex
dc.contributor.authorJansen, Patrick A.
dc.contributor.authorSheil, Douglas
dc.contributor.authorRovero, Francesco
dc.contributor.authorO’brien, Timothy
dc.contributor.authorLarney, Eileen
dc.contributor.authorFletcher, Christine
dc.contributor.authorAndelman, Sandy
dc.contributor.authorAhumada, Jorge
dc.date.accessioned2019-07-03T19:57:06Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-07-03T19:57:06Z
dc.date.issued2019-07
dc.identifier.citationBeaudrot, Lydia; Acevedo, Miguel A.; Lessard, Jean‐philippe ; Zvoleff, Alex; Jansen, Patrick A.; Sheil, Douglas; Rovero, Francesco; O’brien, Timothy ; Larney, Eileen; Fletcher, Christine; Andelman, Sandy; Ahumada, Jorge (2019). "Local temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide." Global Ecology and Biogeography (7): 976-991.
dc.identifier.issn1466-822X
dc.identifier.issn1466-8238
dc.identifier.urihttps://hdl.handle.net/2027.42/149732
dc.description.abstractAimIdentifying the underlying drivers of speciesâ distributional dynamics is critical for predicting change and managing biological diversity. While anthropogenic factors such as climate change can affect species distributions through time, other naturally occurring ecological processes can also have an influence. Theory predicts that interactions between species can influence distributional dynamics, yet empirical evidence remains sparse. A powerful approach is to monitor and model local colonization and extinctionâ the processes that generate change in distributions over timeâ and to identify their abiotic and biotic associations. Intensive cameraâ trap monitoring provides an opportunity to assess the role of temperature and species interactions in the colonization and extinction dynamics of tropical mammals, many of which are species of conservation concern. Using data from a panâ tropical monitoring network, we examined how shortâ term local temperature change and ecological similarity between species (a proxy for the strength of species interactions) influenced the processes that drive distributional shifts.LocationTropical forests worldwide.Time period2007â 2016.Major taxa studiedTerrestrial mammals.MethodsWe used dynamic occupancy models to assess the influence of the abiotic and biotic environment on the distributional dynamics of 42 mammal populations from 36 species on 7 tropical elevation gradients around the world.ResultsOverall, temperature, ecological similarity, or both, were linked to colonization or extinction dynamics in 29 populations. For six species, the effect of temperature depended upon the local mammal community similarity. This result suggests that the way in which temperature influences local colonization and extinction dynamics depends on local mammal community composition.Main conclusionsThese results indicate that varying temperatures influence tropical mammal distributions in surprising ways and suggest that interactions between species mediate distributional dynamics.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherspecies distribution
dc.subject.otherspecies interactions
dc.subject.otheroccupancyâ environment association
dc.subject.otherimperfect detection
dc.subject.otherdynamic occupancy modelling
dc.subject.othercoexistence
dc.subject.otherrange shift
dc.titleLocal temperature and ecological similarity drive distributional dynamics of tropical mammals worldwide
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelGeology and Earth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149732/1/geb12908.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/149732/2/geb12908_am.pdf
dc.identifier.doi10.1111/geb.12908
dc.identifier.sourceGlobal Ecology and Biogeography
dc.identifier.citedreferenceR Development Core Team. ( 2016 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceMalhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., & Saatchi, S. ( 2010 ). Introduction: Elevation gradients in the tropics: Laboratories for ecosystem ecology and global change research. Global Change Biology, 16, 3171 â 3175. https://doi.org/10.1111/j.1365-2486.2010.02323.x
dc.identifier.citedreferenceMargono, B. A., Potapov, P. V., Turubanova, S., Stolle, F., & Hansen, M. C. ( 2014 ) Primary forest cover loss in Indonesia over 2000â 2012. Nature Climate Change, 4, 730 â 735.
dc.identifier.citedreferenceMarshall, A. J., Beaudrot, L., & Wittmer, H. ( 2014 ). Responses of primates and other frugivorous vertebrates to plant resource variability over space and time at Gunung Palung National Park. International Journal of Primatology, 35, 1178 â 1201. https://doi.org/10.1007/s10764-014-9774-4
dc.identifier.citedreferenceMoles, A. T., & Ollerton, J. ( 2016 ). Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? Biotropica, 48 ( 2 ), 141 â 145.
dc.identifier.citedreferenceMoles, A. T., Wallis, I. R., Foley, W. J., Warton, D. I., Stegen, J. C., Bisigato, A. J., â ¦ Prior, L. D. ( 2011 ). Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytologist, 191, 777 â 788. https://doi.org/10.1111/j.1469-8137.2011.03732.x
dc.identifier.citedreferenceMugerwa, B., Sheil, D., Ssekiranda, P., van Heist, M., & Ezuma, P. ( 2013 ). A camera trap assessment of terrestrial vertebrates in Bwindi Impenetrable National Park, Uganda. African Journal of Ecology, 51, 21 â 31. https://doi.org/10.1111/aje.12004
dc.identifier.citedreferencePacifici, M., Foden, W. B., Visconti, P., Watson, J. F. M., Butchart, S. H. M., Kovacs, K. M., â ¦ Rondinini, C. ( 2015 ). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215 â 225. https://doi.org/10.1038/nclimate2448
dc.identifier.citedreferencePimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., â ¦ Sexton, J. O. ( 2014 ). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752. https://doi.org/10.1126/science.1246752
dc.identifier.citedreferencePollock, K. H. ( 1982 ). A captureâ recapture design robust to unequal probability of capture. Journal of Wildlife Management, 46 ( 3 ), 752 â 757.
dc.identifier.citedreferenceRecord, S., Strecker, A., Tuanmu, M.â N., Beaudrot, L., Zarnetske, P., Belmaker, J., â ¦ Bosso, L. ( 2018 ). Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions. PLOS ONE, 13 ( 4 ), e0194650.
dc.identifier.citedreferenceRoslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., â ¦ Slade, E. M. ( 2017 ). Higher predation risk for insect prey at low latitudes and elevations. Science, 356, 742 â 744. https://doi.org/10.1126/science.aaj1631
dc.identifier.citedreferenceRowe, K. C., Rowe, K. M. C., Tingley, M. W., Koo, M. S., Patton, J. L., Conroy, C. J., â ¦ Moritz, C. ( 2015 ). Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences, 282 ( 1799 ), 20141857.
dc.identifier.citedreferenceRoyle, J. A., & Dorazio, R. M. ( 2008 ). Hierarchical model and inference in ecology: The analysis of data from populations, metapopulations, and communities. San Diego, CA: Academic Press.
dc.identifier.citedreferenceRoyle, J. A., & Nichols, J. D. ( 2003 ). Estimating abundance from repeated presenceâ absence data or point counts. Ecology, 84, 777 â 790. https://doi.org/10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
dc.identifier.citedreferenceSchemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. ( 2009 ). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology Evolution and Systematics, 40, 245 â 269.
dc.identifier.citedreferenceSchipper, J., Chanson, J. S., Chiozza, F., Cox, N. A., Hoffmann, M., Katariya, V., â ¦ Young, B. E. ( 2008 ). The status of the worldâ s land and marine mammals: Diversity, threat, and knowledge. Science, 322, 225 â 230. https://doi.org/10.1126/science.1165115
dc.identifier.citedreferenceSchloss, C. A., Nunez, T. A., & Lawler, J. J. ( 2012 ). Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences USA, 109, 8606 â 8611. https://doi.org/10.1073/pnas.1116791109
dc.identifier.citedreferenceSheil, D. ( 2016 ). Disturbance and distributions: Avoiding exclusion in a warming world. Ecology and Society, 21 ( 1 ), https://doi.org/10.5751/ES-07920-210110
dc.identifier.citedreferenceStrauss, S. Y., Webb, C. O., & Salamin, N. ( 2006 ). Exotic taxa less related to native species are more invasive. Proceedings of the Academy of Natural Sciences of Philadelphia, 103, 5841 â 5845.
dc.identifier.citedreferenceSundqvist, M. K., Sanders, N. J., & Wardle, D. A. ( 2013 ). Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44 ( 44 ), 261 â 280. https://doi.org/10.1146/annurev-ecolsys-110512-135750
dc.identifier.citedreferenceSvenning, J. C., Gravel, D., Holt, R. D., Schurr, F. M., Thuiller, W., Munkemuller, T., â ¦ Normand, S. ( 2014 ). The influence of interspecific interactions on species range expansion rates. Ecography, 37, 1198 â 1209. https://doi.org/10.1111/j.1600-0587.2013.00574.x
dc.identifier.citedreferenceSwenson, N. G. ( 2013 ). The assembly of tropical tree communitiesâ The advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264 â 276. https://doi.org/10.1111/j.1600-0587.2012.00121.x
dc.identifier.citedreferenceTEAM Network. ( 2011 ). Terrestrial vertebrate monitoring protocol. In TEAM standardized monitoring protocols, TEAM Website. Retrieved from https://wildlifeinsights.org/team-network
dc.identifier.citedreferenceThompson, R. M., Beardall, J., Beringer, J., Grace, M., & Sardina, P. ( 2013 ). Means and extremes: Building variability into communityâ level climate change experiments. Ecology Letters, 16, 799 â 806. https://doi.org/10.1111/ele.12095
dc.identifier.citedreferenceUrban, M. C., Bocedi, G., Hendy, A. P., Mihoub, J. B., Peâ er, G., Singer, A., â ¦ Travis, J. M. J. ( 2016 ). Improving the forecast for biodiversity under climate change. Science, 353 ( 6304 ), aad8466. https://doi.org/10.1126/science.aad8466.
dc.identifier.citedreferenceUrban, M. C., Tewksbury, J. J., & Sheldon, K. S. ( 2012 ). On a collision course: Competition and dispersal differences create noâ analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B: Biological Sciences, 279, 2072 â 2080. https://doi.org/10.1098/rspb.2011.2367
dc.identifier.citedreferenceUrban, M. C., Zarnetske, P. L., & Skelly, D. K. ( 2013 ). Moving forward: Dispersal and species interactions determine biotic responses to climate change. Climate Change and Species Interactions: Ways Forward, 1297, 44 â 60.
dc.identifier.citedreferenceUriarte, M., Swenson, N. G., Chazdon, R. L., Comita, L. S., Kress, W. J., Erickson, D., â ¦ Thompson, J. ( 2010 ). Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: Implications for community assembly. Ecology Letters, 13, 1503 â 1514. https://doi.org/10.1111/j.1461-0248.2010.01541.x
dc.identifier.citedreferenceVasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. S., â ¦ Oâ Connor, M. I. ( 2014 ). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281 ( 1779 ), 20132612. https://doi.org/10.1098/rspb.2013.2612
dc.identifier.citedreferenceWarren, R. J., & Chick, L. ( 2013 ). Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biology, 19, 2082 â 2088. https://doi.org/10.1111/gcb.12169
dc.identifier.citedreferenceWelbergen, J. A., Klose, S. M., Markus, N., & Eby, P. ( 2008 ). Climate change and the effects of temperature extremes on Australian flyingâ foxes. Proceedings of the Royal Society B: Biological Sciences, 275 ( 1633 ), 419 â 425. https://doi.org/10.1098/rspb.2007.1385
dc.identifier.citedreferenceWisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., â ¦ Svenning, J. C. ( 2013 ). The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews, 88, 15 â 30. https://doi.org/10.1111/j.1469-185X.2012.00235.x
dc.identifier.citedreferenceWright, S. J. ( 1996 ). Phenological responses to seasonality in tropical forest plants. In S. S. Mulkey, R. L. Chazdon, & A. P. Smith, (Eds.), Tropical forest plant ecophysiology (pp. 440 â 460 ). New York, NY: Chapman & Hall.
dc.identifier.citedreferenceYackulic, C. B., Nichols, J. D., Reid, J., & Der, R. ( 2015 ). To predict the niche, model colonization and extinction. Ecology, 96, 16 â 23. https://doi.org/10.1890/14-1361.1
dc.identifier.citedreferenceAlexander, J. M., Diez, J. M., & Levine, J. M. ( 2015 ). Novel competitors shape speciesâ responses to climate change. Nature, 525, 515 â 518. https://doi.org/10.1038/nature14952
dc.identifier.citedreferenceAraujo, M. B., & Luoto, M. ( 2007 ). The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16, 743 â 753. https://doi.org/10.1111/j.1466-8238.2007.00359.x
dc.identifier.citedreferenceAraujo, M. B., & Pearson, R. G. ( 2005 ). Equilibrium of speciesâ distributions with climate. Ecography, 28, 693 â 695. https://doi.org/10.1111/j.2005.0906-7590.04253.x
dc.identifier.citedreferenceAraujo, M. B., & Peterson, A. T. ( 2012 ). Uses and misuses of bioclimatic envelope modeling. Ecology, 93, 1527 â 1539. https://doi.org/10.1890/11-1930.1
dc.identifier.citedreferenceBaru, C., Fegraus, E. H., Andelman, S. J., Chandra, S., Kaya, K., Lin, K., & Youn, C. ( 2012 ). Cyberinfrastructure for observatory and monitoring networks: A case study from the TEAM Network. BioScience, 62, 667 â 675. https://doi.org/10.1525/bio.2012.62.7.9
dc.identifier.citedreferenceBeaudrot, L., Ahumada, J. A., Oâ Brien, T., Alvarezâ Loayza, P., Boekee, K., Camposâ Arceiz, A., â ¦ Andelman, S. J. ( 2016 ). Standardized assessment of biodiversity trends in tropical forest protected areas: The end is not in sight. PLoS Biology, 14, e1002357. https://doi.org/10.1371/journal.pbio.1002357
dc.identifier.citedreferenceBeck, J., Ballesterosâ Meijia, L., Buchmann, C. M., Dengler, J., Fritz, S. A., Gruber, B., â ¦ Dormann, C. F. ( 2012 ). Whatâ s on the horizon for macroecology? Ecography, 35, 673 â 683.
dc.identifier.citedreferenceBertness, M. D., & Callaway, R. ( 1994 ). Positive interactions in communities. Trends in Ecology and Evolution, 9, 191 â 193. https://doi.org/10.1016/0169-5347(94)90088-4
dc.identifier.citedreferenceBlois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. ( 2013 ). Climate change and the past, present, and future of biotic interactions. Science, 341, 499 â 504. https://doi.org/10.1126/science.1237184
dc.identifier.citedreferenceBrooker, R. W., Travis, J. M. J., Clark, E. J., & Dytham, C. ( 2007 ). Modelling speciesâ range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change. Journal of Theoretical Biology, 245, 59 â 65. https://doi.org/10.1016/j.jtbi.2006.09.033
dc.identifier.citedreferenceBruno, J. F., Stachowicz, J. J., & Bertness, M. D. ( 2003 ). Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 18, 119 â 125. https://doi.org/10.1016/S0169-5347(02)00045-9
dc.identifier.citedreferenceBuckley, L. B., Hurlbert, A. H., & Jetz, W. ( 2012 ). Broadâ scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography, 21, 873 â 885. https://doi.org/10.1111/j.1466-8238.2011.00737.x
dc.identifier.citedreferenceBurnham, K. P., & Anderson, D. R. ( 2002 ). Model selection and multimodel inference: A practical informationâ theoretic approach ( 2nd ed. ). New York, NY: Springer.
dc.identifier.citedreferenceCadotte, M., Albert, C. H., & Walker, S. C. ( 2013 ). The ecology of differences: Assessing community assembly with trait and evolutionary distances. Ecology Letters, 16, 1234 â 1244. https://doi.org/10.1111/ele.12161
dc.identifier.citedreferenceCahill, A. E., Aielloâ Lammens, M. E., Fisherâ Reid, M. C., Hua, X., Karanewsky, C. J., Ryu, H. Y., â ¦ Wiens, J. J. ( 2013 ). How does climate change cause extinction? Proceedings of the Royal Society B: Biological Sciences, 280, 20121890.
dc.identifier.citedreferenceCavenderâ Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. ( 2009 ). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693 â 715. https://doi.org/10.1111/j.1461-0248.2009.01314.x
dc.identifier.citedreferenceCheney, W., & Kincaid, D. ( 2008 ). Numerical mathematics and computing ( 6th ed. ). Belmont, CA: Thompson Brooks/Cole.
dc.identifier.citedreferenceClement, M. J., Hines, J. E., Nichols, J. D., Pardieck, K. L., & Ziolkowski, D. J. ( 2016 ). Estimating indices of range shifts in birds using dynamic models when detection is imperfect. Global Change Biology, 22, 3273 â 3285. https://doi.org/10.1111/gcb.13283
dc.identifier.citedreferenceCrotty, S. M., & Bertness, M. D. ( 2015 ). Positive interactions expand habitat use and the realized niches of sympatric species. Ecology, 96, 2575 â 2582. https://doi.org/10.1890/15-0240.1
dc.identifier.citedreferenceDarwin, C. ( 1859 ). On the origin of species by means of natural selection. London, UK: John Murray.
dc.identifier.citedreferenceDiamond, J. M. ( 1975 ). Assembly of species communities. In M. L. Cody, & J. M. Diamond (Eds.), Ecology and evolution of communities (pp. 342 â 444 ). Cambridge, MA: Harvard University Press.
dc.identifier.citedreferenceDornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A. E. ( 2014 ). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296 â 299. https://doi.org/10.1126/science.1248484
dc.identifier.citedreferenceDornelas, M., Magurran, A. E., Buckland, S. T., Chao, A., Chazdon, R. L., Colwell, J., â ¦ Vellend, M. ( 2013 ). Quantifying temporal change in biodiversity: Challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 280, 20121931. https://doi.org/10.1098/rspb.2012.1931
dc.identifier.citedreferenceDuque, A., Stephenson, P., & Feeley, K. ( 2015 ). Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences USA, 112, 10744 â 10749. https://doi.org/10.1073/pnas.1506570112
dc.identifier.citedreferenceFeeley, K. J., & Silman, M. R. ( 2011 ). The data void in modeling current and future distributions of tropical species. Global Change Biology, 17, 626 â 630. https://doi.org/10.1111/j.1365-2486.2010.02239.x
dc.identifier.citedreferenceFegraus, E. H., Lin, K., Ahumada, J. A., Baru, C., Chandra, S., & Youn, C. ( 2011 ). Data acquisition and management software for camera trap data: A case study from the TEAM Network. Ecological Informatics, 6, 345 â 353. https://doi.org/10.1016/j.ecoinf.2011.06.003
dc.identifier.citedreferenceFielding, A. H. ( 2007 ). Cluster and classification techniques for the biosciences. New York, NY: Cambridge University Press.
dc.identifier.citedreferenceFiske, I. J., & Chandler, R. B. ( 2011 ). Unmarked: An R Package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1 â 23.
dc.identifier.citedreferenceFreeman, B. G., & Freeman, A. M. C. ( 2014 ). Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences USA, 111, 4490 â 4494. https://doi.org/10.1073/pnas.1318190111
dc.identifier.citedreferenceFrench, A. R., & Smith, T. B. ( 2005 ). Importance of body size in determining dominance hierarchies among diverse tropical frugivores. Biotropica, 37, 96 â 101.
dc.identifier.citedreferenceFritz, S. A., Binindaâ Emonds, O. R. P., & Purvis, A. ( 2009 ). Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecology Letters, 12, 538 â 549. https://doi.org/10.1111/j.1461-0248.2009.01307.x
dc.identifier.citedreferenceGhiglieri, M. P., Butynski, T. M., Struhsaker, T. T., Leland, L., Wallis, S. J., & Waser, P. ( 1982 ). Bush pig (Potamochoerusâ porcus) polychromatism and ecology in Kibale Forest, Uganda. African Journal of Ecology, 20, 231 â 236. https://doi.org/10.1111/j.1365-2028.1982.tb00298.x
dc.identifier.citedreferenceGorokhovich, Y., & Voustianiouk, A. ( 2006 ). Accuracy assessment of the processed SRTMâ based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 104, 409 â 415. https://doi.org/10.1016/j.rse.2006.05.012
dc.identifier.citedreferenceGower, J. C. ( 1971 ). General coefficient of similarity and some of its properties. Biometrics, 27, 857 â 871.
dc.identifier.citedreferenceHargreaves, A. L., Samis, K. E., & Eckert, C. G. ( 2013 ). Are speciesâ range limits simply niche limits writ large? A review of transplant experiments beyond the range. American Naturalist, 183, 157 â 173. https://doi.org/10.1086/674525
dc.identifier.citedreferenceHegerl, C., Burgess, N. D., Nielsen, M. R., Martin, E., Ciolli, M., & Rovero, F. ( 2017 ). Using camera trap data to assess the impact of bushmeat hunting on forest mammals in Tanzania. Oryx, 51, 87 â 97. https://doi.org/10.1017/S0030605315000836
dc.identifier.citedreferenceHansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., â ¦ Townshend, J. R. G. ( 2013 ). Highâ resolution global maps of 21st century forest cover change. Science, 342, 850 â 853.
dc.identifier.citedreferenceHilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., & Theobald, E. J. ( 2013 ). How will biotic interactions influence climate changeâ induced range shifts? Climate Change and Species Interactions: Ways Forward, 1297, 112 â 125.
dc.identifier.citedreferenceHoule, A., Chapman, C. A., & Vickery, W. L. ( 2010 ). Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behavioral Ecology and Sociobiology, 64, 429 â 441. https://doi.org/10.1007/s00265-009-0859-6
dc.identifier.citedreferenceIUCN. ( 2014 ) The IUCN Red List of Threatened Species. Version 2014.1. Retrieved from http://www.iucnredlist.org
dc.identifier.citedreferenceJansen, P. A., Ahumada, J., Fegraus, E., & Oâ Brien, T. ( 2014 ). TEAM: A standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In P. Meek, & P. Fleming (Eds.), Camera trapping: Wildlife management and research (pp. 263 â 270 ). Collingwood, Australia: CSIRO.
dc.identifier.citedreferenceJarvis, A., Guevara, E., Reuter, H. I., & Nelson, A. D. ( 2008 ). Holeâ filled SRTM for the globe: Version 4: Data grid. Web publication/site, CGIAR Consortium for Spatial Information. Retrieved from http://srtm.csi.cgiar.org/
dc.identifier.citedreferenceJones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., Oâ Dell, J., Orme, C. D. L., â ¦ Purvis, A. ( 2009 ). PanTHERIA: A speciesâ level database of life history, ecology and geography of extant and recently extinct mammals. Ecology, 90, 2648 â 2648. https://doi.org/10.1890/08-1494.1
dc.identifier.citedreferenceKery, M., Guilleraâ Arroita, G., & Lahozâ Monfort, J. J. ( 2013 ). Analysing and mapping species range dynamics using occupancy models. Journal of Biogeography, 40, 1463 â 1474. https://doi.org/10.1111/jbi.12087
dc.identifier.citedreferenceKhaliq, I., Hof, C., Prinzinger, R., Bohningâ Gaese, K., & Pfenninger, M. ( 2014 ). Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proceedings of the Royal Society B: Biological Sciences, 281 ( 1789 ), 20141097. https://doi.org/10.1098/rspb.2014.1097
dc.identifier.citedreferenceKuhn, T. S., Mooers, A. O., & Thomas, G. H. ( 2011 ). A simple polytomy resolver for dated phylogenies. Methods in Ecology and Evolution, 2, 427 â 436. https://doi.org/10.1111/j.2041-210X.2011.00103.x
dc.identifier.citedreferenceLaliberté, E., Legendre, P., & Shipley, B. ( 2014 ). FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.
dc.identifier.citedreferenceLenoir, J., & Svenning, J. C. ( 2015 ). Climateâ related range shiftsâ a global multidimensional synthesis and new research directions. Ecography, 38, 15 â 28. https://doi.org/10.1111/ecog.00967
dc.identifier.citedreferenceLessard, J. P., Belmaker, J., Myers, J., Chase, J. M., & Rahbek, C. ( 2012 ). Inferring local ecological processes amid speciesâ pool influences. Trends in Ecology and Evolution, 27, 600 â 607. https://doi.org/10.1016/j.tree.2012.07.006
dc.identifier.citedreferenceLessard, J. P., Weinstein, B., Borregaard, M. K., Marske, K. A., Rojas, D., McGuire, J. A., â ¦ Graham, C. H. ( 2016 ). Processâ based species pools reveal the hidden signature of biotic interactions amid the influence of temperature filtering. The American Naturalist, 187, 75 â 88. https://doi.org/10.1086/684128
dc.identifier.citedreferenceLevine, J. M., Adler, P. B., & Yelenik, S. G. ( 2004 ). A metaâ analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975 â 989.
dc.identifier.citedreferenceMacArthur, R. H. ( 1972 ). Geographical ecology: Patterns in the distribution of species. New York, NY: Harper and Row.
dc.identifier.citedreferenceMacKenzie, D. I. ( 2006 ). Modeling the probability of use: The effect of, and dealing with, detecting a species imperfectly. Journal of Wildlife Management, 70, 367 â 374.
dc.identifier.citedreferenceMacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. ( 2003 ). Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84, 2200 â 2207. https://doi.org/10.1890/02-3090
dc.identifier.citedreferenceMacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. P., Bailey, L. L., & Hines, J. E. ( 2006 ). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Amsterdam, The Netherlands: Elsevier.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.