Show simple item record

Analysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells

dc.contributor.authorArtegiani, Elisa
dc.contributor.authorMenossi, Daniele
dc.contributor.authorShiel, Huw
dc.contributor.authorDhanak, Vin
dc.contributor.authorMajor, Jonathan D.
dc.contributor.authorGasparotto, Andrea
dc.contributor.authorSun, Kai
dc.contributor.authorRomeo, Alessandro
dc.date.accessioned2019-08-09T17:13:11Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-08-09T17:13:11Z
dc.date.issued2019-08
dc.identifier.citationArtegiani, Elisa; Menossi, Daniele; Shiel, Huw; Dhanak, Vin; Major, Jonathan D.; Gasparotto, Andrea; Sun, Kai; Romeo, Alessandro (2019). "Analysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells." Progress in Photovoltaics: Research and Applications 27(8): 706-715.
dc.identifier.issn1062-7995
dc.identifier.issn1099-159X
dc.identifier.urihttps://hdl.handle.net/2027.42/150517
dc.description.abstractOne of the crucial points in the production of CdTe solar cells is the insertion of copper in the back contact and in the absorber. As demonstrated by the top performing devices presented in literature: copper is necessary for high efficiency devices. However, despite this, copper was found to be a fast diffuser degrading the cell in the long term. Different approaches for limiting this effect have been widely presented from several laboratories, from the preparation of CuxTe by the controlled evaporation of Cu and Te to the application of ZnTe, which incorporates Cu, blocking its diffusion in the bulk. We have developed a wet deposition method for inserting in the CdTe structure a quantity of copper equivalent to a 0.1‐nm‐thick Cu layer. We are able to reach similar efficiencies to the ones of devices with a standard 2‐nm‐thick evaporated copper layer, but with a dramatic improvement in performance stability.As demonstrated by the top performing CdTe devices, Cu is necessary for high efficiency. However, it is a fast diffuser degrading the cell in the long term. We have developed a novel CuCl2 wet deposition method to insert minimal amount of Cu in the CdTe. This brings to high efficiencies but with a rollover‐free ohmic back contact and a dramatic improvement in performance stability.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherback contact
dc.subject.otherCdTe
dc.subject.othercopper
dc.subject.otherCuCl2
dc.titleAnalysis of a novel CuCl2 back contact process for improved stability in CdTe solar cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150517/1/pip3148.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150517/2/pip3148_am.pdf
dc.identifier.doi10.1002/pip.3148
dc.identifier.sourceProgress in Photovoltaics: Research and Applications
dc.identifier.citedreferenceBeach J, Seymour FH, Kaydanov VI, Ohno TR. Studies of basic electronic properties of CdTe‐based solar cells and their evolution during processing and stress. Subcontract Rep. NREL/SR‐520‐41097, (January), 2006.
dc.identifier.citedreferenceRomeo A, Salavei A, Rimmaudo I, Bosio A, Menossi D, Picinelli F, Romeo N. Electrical characterization and aging of CdTe thin film solar cells with Bi2Te3 back contact. Conf. Rec. 39th IEEE Photovolt. Spec. Conf., 2013; 1178 – 1182.
dc.identifier.citedreferenceRomeo N, Bosio a, Romeo a. An innovative process suitable to produce high‐efficiency CdTe/CdS thin‐film modules. Sol Energy Mater Sol Cells. 2010; 94 ( 1 ): 2 ‐ 7.
dc.identifier.citedreferenceBätzner DL, Romeo A, Zogg H, Wendt R, Tiwari AN. Development of efficient and stable back contacts on CdTe/CdS solar cells. Thin Solid Films. 2001; 387 ( 1–2 ): 151 ‐ 154.
dc.identifier.citedreferenceGrecu D, Compaan a D. Photoluminescence study of Cu diffusion and electromigration in CdTe. Appl Phys Lett. 1999; 75 ( 1999 ): 361 ‐ 363.
dc.identifier.citedreferenceDobson KD, Visoly‐fisher I, Hodes G, Cahen D. Stability of CdTe/CdS thin‐film solar cells. Sol Energy Mater Sol Cells. 2000; 62 ( 3 ): 295 ‐ 325.
dc.identifier.citedreferenceRimmaudo I, Salavei A, Artegiani E, et al. Improved stability of CdTe solar cells by absorber surface etching. Sol Energy Mater Sol Cells. 2017; 162 ( December 2016 ): 127 ‐ 133.
dc.identifier.citedreferenceMajor JD, Treharne RE, Phillips LJ, Durose K. A low‐cost non‐toxic post‐growth activation step for CdTe solar cells. Nature. 2014; 511 ( 7509 ): 334 ‐ 337.
dc.identifier.citedreferenceSalavei A, Rimmaudo I, Piccinelli F, Menossi D, Bosio A, Romeo N, Romeo A. Analysis of CdTe activation treatment with a novel approach. 28th Eur Photovolt Sol Energy Conf Exhib, 2014; 2140 – 2142.
dc.identifier.citedreferenceCastaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J. Comparison of electrical and luminescence data for the A center in CdTe. Appl Phys Lett. 1996; 69 ( 23 ): 3510 ‐ 3512.
dc.identifier.citedreferenceMao D, Blatz G, Wickersham CE, Gloeckler M. Correlative impurity distribution analysis in cadmium telluride (CdTe) thin‐film solar cells by ToF‐SIMS 2D imaging. Sol Energy Mater Sol Cells. 2016; 157: 65 ‐ 73.
dc.identifier.citedreferenceAris KA, Rahman KS, Enam FMT, Kamaruzzaman MIB, Yahya IB, Amin N. An investigation on copper doping to CdTe absorber layers in CdTe thin film solar cells. 2016 Int Conf Adv Electr Electron Syst Eng, 2016; 405 – 408.
dc.identifier.citedreferenceGordillo G, Grizalez M, Moreno LC, Landazábal F. Influence of the optical window on the performance of TCO/CdS/CdTe solar cells. Phys Status Solidi Basic Res. 2000; 220 ( 1 ): 215 ‐ 219.
dc.identifier.citedreferenceMunshi AH, Kephart JM, Abbas A, et al. Effect of CdCl 2 passivation treatment on microstructure and performance of CdSeTe/CdTe thin‐film photovoltaic devices. Sol Energy Mater Sol Cells. 2018; 186 ( June ): 259 ‐ 265.
dc.identifier.citedreferenceMunshi AH, Kephart J, Abbas A, et al. Polycrystalline CdSeTe/CdTe absorber cells with 28 mA/cm 2 short‐circuit current. IEEE J Photovoltaics. 2018; 8 ( 1 ): 310 ‐ 314.
dc.identifier.citedreferenceMcCandless BE. Thermochemical and kinetic aspects of cadmium telluride solar cell processing. Proc. 2001 MRS Spring Meet., H1.6, 2001; 1 – 12.
dc.identifier.citedreferenceYan Y, Dhere RG, Jones KM, Al‐Jassim MM. Influence of substrate structure on the growth of CdTe thin films. J Appl Phys. 2001; 89 ( 11 I ): 5944 ‐ 5948.
dc.identifier.citedreferenceBosio A, Romeo A, Menossi D, Mazzamuto S, Romeo N. Review: the second‐generation of CdTe and CuInGaSe2 thin film PV modules. Cryst Res Technol. 2011; 46 ( 8 ): 857 ‐ 864.
dc.identifier.citedreferenceHeath JT, Cohen JD, Shafarman WN. Bulk and metastable defects in CuIn 1 − x Ga x Se 2 thin films using drive‐level capacitance profiling. J Appl Phys. 2004; 95 ( 3 ): 1000 ‐ 1010.
dc.identifier.citedreferenceLi JV, Halverson AF, Sulima OV, et al. Theoretical analysis of effects of deep level, back contact, and absorber thickness on capacitance‐voltage profiling of CdTe thin‐film solar cells. Sol Energy Mater Sol Cells. 2012; 100: 126 ‐ 131.
dc.identifier.citedreferenceBalcioglu A, Ahrenkiel RK, Hasoon F. Deep‐level impurities in CdTe/CdS thin‐film solar cells. J Appl Phys. 2000; 88 ( 12 ): 7175 ‐ 7178.
dc.identifier.citedreferenceTang J, Mao D, Ohno TR, Kaydanov V, Trefny JU. Properties of ZnTe:Cu thin films and CdS/CdTe/ZnTe solar cells. Proc. 26th IEEE Photovolt. Spec. Conf., 1997; 439 – 442.
dc.identifier.citedreferenceRimmaudo I, Salavei A, Romeo A. Effects of activation treatment on the electrical properties of low temperature grown CdTe devices. Thin Solid Films. 2013; 535: 253 ‐ 256.
dc.identifier.citedreferenceWei S‐H, Zhang SB, Zunger A. First‐principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys. 2000; 87 ( 2000 ): 1304 ‐ 1311.
dc.identifier.citedreferenceJun‐Feng H, Liu X, Li‐Mei C, Hamon J, Besland MP. Investigation of oxide layer on CdTe film surface and its effect on the device performance. Mater Sci Semicond Process. 2015; 40: 402 ‐ 406.
dc.identifier.citedreferenceSong T, Moore A, Sites JR. Te layer to reduce the CdTe back‐contact barrier. IEEE J Photovoltaics. 2018; 8 ( 1 ): 293 ‐ 298.
dc.identifier.citedreferenceGessert TA, Mason AR, Sheldon P, Swartzlander AB, Niles D, Coutts TJ. Development of Cu‐doped ZnTe as a back‐contact interface layer for thin‐film CdS/CdTe solar cells. J Vac Sci Technol a Vacuum, Surfaces, Film. 1996; 14 ( 3 ): 806 ‐ 812.
dc.identifier.citedreferenceDharmadasa I. Review of the CdCl 2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. CoatingsTech. 2014; 4 ( 2 ): 282 ‐ 307.
dc.identifier.citedreferenceGreen MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl‐Ebinger J, Ho‐Baillie AWY. Solar cell efficiency tables (version 52). Prog Photovolt Res Appl. 2018; 26 ( 7 ): 427 ‐ 436.
dc.identifier.citedreferencePhilips DS, Warmuth W. Photovoltaics report 2019. Fraunhofer ISE, (March), 2019; 1–43.
dc.identifier.citedreferenceWei SH, Zhang SB. Chemical trends of defect formation and doping limit in II‐VI semiconductors: the case of CdTe. Phys Rev B ‐ Condens Matter Mater Phys. 2002; 66 ( 15 ): 1 ‐ 10.
dc.identifier.citedreferenceDemtsu SH, Sites JR. Effect of back‐contact barrier on thin‐film CdTe solar cells. Thin Solid Films. 2006; 510 ( 1–2 ): 320 ‐ 324.
dc.identifier.citedreferenceCorwine CR, Pudov AO, Gloeckler M, Demtsu SH, Sites JR. Copper inclusion and migration from the back contact in CdTe solar cells. Sol Energy Mater Sol Cells. 2004; 82 ( 4 ): 481 ‐ 489.
dc.identifier.citedreferenceDas SK, Morris GC. Influence of growth and microstructure of electrodeposited cadmium telluride films on the properties of n‐CdS/p‐CdTe thin‐film solar cells. J Appl Phys. 1992; 72 ( 10 ): 4940 ‐ 4945.
dc.identifier.citedreferenceKučys E, Jerhot J, Bertulis K, Bariss V. Copper impurity behaviour in CdTe films. Phys Status Solidi. 1980; 59 ( 1 ): 91 ‐ 99.
dc.identifier.citedreferenceKranz L, Gretener C, Perrenoud J, et al. Doping of polycrystalline CdTe for high‐efficiency solar cells on flexible metal foil. Nat Commun. 2013; 4 ( 1 ).
dc.identifier.citedreferenceWu X, Zhou J, Duda a, et al. Phase control of CuxTe film and its effects on CdS/CdTe solar cell. Thin Solid Films. 2007; 515 ( 15 ): 5798 ‐ 5803.
dc.identifier.citedreferenceGessert TA, Asher S, Johnston S, Duda A, Young MR, Moriarty T. Formation Of ZnTe: Cu/Ti contacts at high temperature for CdS/CdTe devices. Conf. Rec. 2006 IEEE 4th World Conf. Photovolt. Energy Conversion, 2006; 432 – 435.
dc.identifier.citedreferenceLi J, Diercks DR, Ohno TR, et al. Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing. Sol Energy Mater Sol Cells. 2015; 133: 208 ‐ 215.
dc.identifier.citedreferenceRomeo N, Bosio A, Mazzamuto S, Romeo A, Vaillant Roca L. High efficiency CdTe/CdS thin film solar cells with a novel back contact. Proc. 22nd Eur. Photovolt. Sol. Energy Conf., 2007; 1919 – 1921.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.