Show simple item record

Increasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness

dc.contributor.authorMarx, Hannah E.
dc.contributor.authorRichards, Melissa
dc.contributor.authorJohnson, Grahm M.
dc.contributor.authorTank, David C.
dc.date.accessioned2019-08-09T17:13:32Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2019-08-09T17:13:32Z
dc.date.issued2019-07
dc.identifier.citationMarx, Hannah E.; Richards, Melissa; Johnson, Grahm M.; Tank, David C. (2019). "Increasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness." American Journal of Botany 106(7): 958-970.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/150529
dc.publisherIdaho Museum of Natural History
dc.publisherWiley Periodicals, Inc.
dc.subject.otherIdaho
dc.subject.othermean nearest taxon distance
dc.subject.othermean pairwise distance
dc.subject.othermega‐phylogeny
dc.subject.othervascular plants
dc.subject.otherhigh‐throughput sequencing
dc.subject.otherelevation
dc.subject.othercommunity phylogenetics
dc.subject.otheralpine
dc.titleIncreasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbsecondlevelBotany
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/1/ajb21328-sup-0002-AppendixS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/2/ajb21328-sup-0003-AppendixS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/3/ajb21328-sup-0004-AppendixS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/4/ajb21328.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/5/ajb21328-sup-0009-AppendixS9.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/6/ajb21328-sup-0005-AppendixS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/7/ajb21328-sup-0007-AppendixS7.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/8/ajb21328-sup-0006-AppendixS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/9/ajb21328-sup-0008-AppendixS8.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/10/ajb21328_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/150529/11/ajb21328-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1002/ajb2.1328
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferencePigot, A. L., and R. S. Etienne. 2015. A new dynamic null model for phylogenetic community structure. Ecology Letters 18: 153 – 163.
dc.identifier.citedreferenceCholer, P., R. Michalet, and R. M. Callaway. 2001. Facilitation and competition on gradients in alpine plant communities. Ecology 82: 3295 – 3308.
dc.identifier.citedreferencePennell, M. W., J. M. Eastman, G. J. Slater, J. W. Brown, J. C. Uyeda, R. G. FitzJohn, M. E. Alfaro, and L. J. Harmon. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30: 2216 – 2218.
dc.identifier.citedreferenceConsortium of Pacific Northwest Herbaria. 2007‐2018 (continuously updated) Website http://www.pnwherbaria.org/ [accessed 05 March 2013].
dc.identifier.citedreferenceQian, H., R. E. Ricklefs, and P. S. White. 2005. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters 8: 15 – 22.
dc.identifier.citedreferenceQuintero, I., and W. Jetz. 2018. Global elevational diversity and diversification of birds. Nature 555: 246 – 250.
dc.identifier.citedreferenceR Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website https://www.R-project.org/.
dc.identifier.citedreferenceReid, R. R. 1963. Reconnaissance geology of the Sawtooth Range. Idaho Bureau of Mines and Geology 129: 958 – 61.
dc.identifier.citedreferenceRichardson, A. D., and A. J. Friedland. 2009. A Review of the Theories to Explain Arctic and Alpine Treelines Around the World. Journal of Sustainable Forestry 28: 218 – 242.
dc.identifier.citedreferenceRoquet, C., W. Thuiller, and S. Lavergne. 2012. Building megaphylogenies for macroecology: taking up the challenge. Ecography 35: 958 – 14.
dc.identifier.citedreferenceSchlatterer, E. F. 1972. A preliminary description of plant communities found on the Sawtooth, White Cloud, Boulder, and Pioneer Mountains. United States Forest Service Report – Intermountain Region.
dc.identifier.citedreferenceSmith, J. M. B., and A. M. Cleef. 1988. Composition and Origins of the World’s Tropicalpine Floras. Journal of Biogeography 15: 631 – 645.
dc.identifier.citedreferenceSmith, S. A., and C. W. Dunn. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: 715 – 716.
dc.identifier.citedreferenceSmith, S. A., and B. C. O’Meara. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690.
dc.identifier.citedreferenceSmith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2009. Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology 9: 958 – 12.
dc.identifier.citedreferenceSoltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulio‐Rodriguez, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730.
dc.identifier.citedreferenceStamatakis, A. 2006. RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688 – 2690.
dc.identifier.citedreferenceSteele, R. W. and the Intermountain Forest Range Experiment Station. 1981. Forest habitat types of central Idaho. U.S. Dept. of Agriculture, Forest Service Intermountain Forest and Range Experiment Station.
dc.identifier.citedreferenceStein, A., K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866 – 880.
dc.identifier.citedreferenceTucker, C. M., M. W. Cadotte, S. B. Carvalho, T. J. Davies, S. Ferrier, S. A. Fritz, R. Grenyer, et al. 2016. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92: 698 – 715.
dc.identifier.citedreferenceUribe‐Convers, S., M. L. Settles, and D. C. Tank. 2016. A Phylogenomic Approach Based on PCR Target Enrichment and High Throughput Sequencing: Resolving the Diversity within the South American Species of Bartsia L. (Orobanchaceae). PLoS ONE 11: e0148203.
dc.identifier.citedreferenceValiente‐Banuet, A., and M. Verdú. 2007. Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters 10: 1029 – 1036.
dc.identifier.citedreferenceVamosi, S. M., S. B. Heard, J. C. Vamosi, and C. O. Webb. 2009. Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18: 572 – 592.
dc.identifier.citedreferenceVellend, M. 2010. Conceptual Synthesis in Community Ecology. The Quarterly Review of Biology 85: 183 – 206.
dc.identifier.citedreferenceWebb, C. O. 2000. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. American Naturalist 156: 145 – 155.
dc.identifier.citedreferenceWebb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475 – 505.
dc.identifier.citedreferenceWinkler, D. E., R. J. Butz, M. J. Germino, K. Reinhardt, and L. M. Kueppers. 2018. Snowmelt Timing Regulates Community Composition, Phenology, and Physiological Performance of Alpine Plants. Frontiers in Plant Science 9: 1140.
dc.identifier.citedreferenceWinter, M., V. Devictor, and O. Schweiger. 2013. Phylogenetic diversity and nature conservation: where are we? Trends in Ecology & Evolution 28: 199 – 204.
dc.identifier.citedreferenceWright, D. H., and J. H. Reeves. 1992. On the Meaning and Measurement of Nestedness of Species Assemblages. Oecologia 92: 416 – 428.
dc.identifier.citedreferenceZanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 – 92.
dc.identifier.citedreferenceAngiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 958 – 20.
dc.identifier.citedreferenceBaselga, A. 2009. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134 – 143.
dc.identifier.citedreferenceBillings, W. D., and H. A. Mooney. 1968. The Ecology of Arctic and Alpine Plants. Biological Reviews 43: 481 – 529.
dc.identifier.citedreferenceBorgert, J. A., K. A. Lundeen, and G. D. Thackray. 1999. Glacial Geology of the Southeastern Sawtooth Mountains. In Hughes SS and Thackray GD [eds.], Guidebook to the Geology of Eastern Idaho. Idaho Museum of Natural History. Pocatello, USA: Idaho Museum of Natural History, 205 – 217.
dc.identifier.citedreferenceBoucher, F. C., S. Lavergne, M. Basile, P. Choler, and S. Aubert. 2016. Evolution and biogeography of the cushion life form in angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 20: 22 – 31.
dc.identifier.citedreferenceBryant, J. A., C. Lamanna, H. Morlon, A. J. Kerkhoff, B. J. Enquist, and J. L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences, USA 105: 11505 – 11511.
dc.identifier.citedreferenceCadotte, M., C. H. Albert, and S. C. Walker. 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters 16: 1234 – 1244.
dc.identifier.citedreferenceCavender‐Bares, J., and A. Wilczek. 2003. Integrating micro‐ and macroevolutionary processes in community ecology. Ecology 84: 592 – 597.
dc.identifier.citedreferenceCavender‐Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: S109 – S122.
dc.identifier.citedreferenceCavender‐Bares, J., K. H. Kozak, P. V. A. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12: 693 – 715.
dc.identifier.citedreferenceCronn, R., B. J. Knaus, A. Liston, P. J. Maughan, M. Parks, J. V. Syring, and J. Udall. 2012. Targeted enrichment strategies for next‐generation plant biology. American Journal of Botany 99: 291 – 311.
dc.identifier.citedreferenceDoyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11 – 15.
dc.identifier.citedreferenceDullinger, S., A. Gattringer, W. Thuiller, D. Moser, N. E. Zimmermann, A. Guisan, W. Willner, et al. 2012. Extinction debt of high‐mountain plants under twenty‐first‐century climate change. Nature Climate Change 2: 619 – 622.
dc.identifier.citedreferenceEastman, J. M., C. E. T. Paine, and O. J. Hardy. 2011. spacodiR: structuring of phylogenetic diversity in ecological communities. Bioinformatics 27: 2437 – 2438.
dc.identifier.citedreferenceEastman, J. M., L. J. Harmon, and D. C. Tank. 2013. Congruification: support for time scaling large phylogenetic trees. Methods in Ecology and Evolution 4: 688 – 691.
dc.identifier.citedreferenceElsen, P. R., and M. W. Tingley. 2015. Global mountain topography and the fate of montane species under climate change. Nature Climate Change 5: 772 – 776.
dc.identifier.citedreferenceEmerson, B. C., and R. G. Gillespie. 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution 23: 619 – 630.
dc.identifier.citedreferenceErtter, B., and B. Moseley. 1992. Floristic regions of Idaho. Journal of the Idaho Academy of Science 28: 57 – 70.
dc.identifier.citedreferenceGerhold, P., J. F. Cahill Jr., M. Winter, I. V. Bartish, and A. Prinzing. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29: 600 – 614.
dc.identifier.citedreferenceGodden, G. T., I. E. Jordon‐Thaden, S. Chamala, A. A. Crowl, N. García, C. C. Germain‐Aubrey, J. M. Heaney, et al. 2012. Making next‐generation sequencing work for you: approaches and practical considerations for marker development and phylogenetics. Plant Ecology and Diversity 5: 427 – 450.
dc.identifier.citedreferenceGoslee, S. C., and D. L. Urban. 2007. The ecodist package for dissimilarity‐based analysis of ecological data. Journal of Statistical Software 22: 958 – 19.
dc.identifier.citedreferenceGraham, C. H., A. C. Carnaval, C. D. Cadena, K. R. Zamudio, T. E. Roberts, J. L. Parra, C. M. McCain, et al. 2014. The origin and maintenance of montane diversity: Integrating evolutionary and ecological processes. Ecography 37: 711 – 719.
dc.identifier.citedreferenceGraham, C. H., D. Storch, and A. Machac. 2018. Phylogenetic scale in ecology and evolution. Global Ecolology and Biogeography 27: 175 – 187.
dc.identifier.citedreferenceGrover, C. E., A. Salmon, and J. F. Wendel. 2012. Targeted sequence capture as a powerful tool for evolutionary analysis. American Journal of Botany 99: 312 – 319.
dc.identifier.citedreferenceHardy, O. J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology 96: 914 – 926.
dc.identifier.citedreferenceHardy, O. J., and B. Senterre. 2007. Characterizing the Phylogenetic Structure of Communities by an Additive Partitioning of Phylogenetic Diversity. Journal of Ecology 95: 493 – 506.
dc.identifier.citedreferenceHarper, K. T., C. D. Freeman, K. W. Ostler, and L. G. Klikoff. 1978. The flora of the great basin mountain ranges: Diversity, sources, and dispersal ecology. Provo, USA: Intermountain biogeography: a symposium.
dc.identifier.citedreferenceHartman, R. L. 1992. The Rocky Mountain Herbarium, associated floristic inventory, and the flora of the Rocky Mountains project. Journal of the Idaho Academy of Science 28: 22 – 43.
dc.identifier.citedreferenceHilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine, and M. M. Mayfield. 2012. Rethinking Community Assembly through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics 43: 227 – 248.
dc.identifier.citedreferenceHitchcock, C. L., and A. Cronquist. 1973. Flora of the Pacific Northwest: An Illustrated Manual. University of Washington Press, Seattle, WA, USA.
dc.identifier.citedreferenceHubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ, USA.
dc.identifier.citedreferenceHughes, C. E., and G. W. Atchison. 2015. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytologist 207: 275 – 282.
dc.identifier.citedreferenceJarzyna, M. A., and W. Jetz. 2016. Detecting the Multiple Facets of Biodiversity. Trends in Ecology & Evolution 31: 527 – 538.
dc.identifier.citedreferenceJin, L. S., M. W. Cadotte, and M.‐J. Fortin. 2015. Phylogenetic turnover patterns consistent with nicheconservatism in montane plant species. Journal of Ecology 103: 742 – 749.
dc.identifier.citedreferenceJohnson, G. M. 2019. Floristics and biogeography of the high Idaho Batholith ecoregion (MS thesis). University of Idaho, Moscow, Idaho.
dc.identifier.citedreferenceKatoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772 – 780.
dc.identifier.citedreferenceKearse, M., R. Moir, A. Wilson, S. Stones‐Havas, M. Cheung, S. Sturrock, S. Buxton, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647 – 1649.
dc.identifier.citedreferenceKembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463 – 1464.
dc.identifier.citedreferenceKier, G., J. Mutke, E. Dinerstein, T. H. Ricketts, W. Küper, H. Kreft, and W. Barthlott. 2005. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography 32: 1107 – 1116.
dc.identifier.citedreferenceKier, G., H. Kreft, T. M. Lee, W. Jetz, P. L. Ibisch, C. Nowicki, J. Mutke, et al. 2009. A Global Assessment of Endemism and Species Richness across Island and Mainland Regions. Proceedings of the National Academy of Sciences, USA 106: 9322 – 9327.
dc.identifier.citedreferenceKiilsgaard, T. H., V. L. Freeman, and J. S. Coffman. 1970. Mineral resources of the Sawtooth Primitive Area, Idaho. In Studies related to wilderness–primitive areas; Geological Survey Bulletin: 1319‐D. United States Government Printing Office, Washington, USA.
dc.identifier.citedreferenceKörner, C. 1995. Alpine plant diversity: a global survey and functional interpretations. Ecological Studies 113: 45 – 62.
dc.identifier.citedreferenceKörner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution 15: 513 – 514.
dc.identifier.citedreferenceKörner, C. 2003. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin, Germany & New York.
dc.identifier.citedreferenceKörner, C. 2007. The use of “altitude” in ecological research. Trends in Ecology & Evolution 22: 569 – 574.
dc.identifier.citedreferenceKörner, C. 2011. Coldest places on earth with angiosperm plant life. Alpine Botany 121: 11 – 22.
dc.identifier.citedreferenceKörner, C., J. Paulsen, and E. M. Spehn. 2011. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany 121: 73 – 78.
dc.identifier.citedreferenceKraft, N. J. B., W. K. Cornwell, C. O. Webb, and D. D. Ackerly. 2007. Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. The American Naturalist 170: 271 – 283.
dc.identifier.citedreferenceKraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592 – 599.
dc.identifier.citedreferenceLe Bagousse‐Pinguet, Y., P. Liancourt, L. Götzenberger, F. de Bello, J. Altman, V. Brozova, Z. Chlumska, et al. 2018. A multi‐scale approach reveals random phylogenetic patterns at the edge of vascular plant life. Perspectives in Plant Ecology, Evolution and Systematics 30: 22 – 30.
dc.identifier.citedreferenceLeprieur, F., C. Albouy, J. De Bortoli, P. F. Cowman, D. R. Bellwood, and D. Mouillot. 2012. Quantifying Phylogenetic Beta Diversity: Distinguishing between “True” Turnover of Lineages and Phylogenetic Diversity Gradients. PLoS ONE 7: e42760.
dc.identifier.citedreferenceLi, X. H., X. X. Zhu, Y. Niu, and H. Sun. 2014. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China. Journal of Systematics and Evolution 52: 280 – 288.
dc.identifier.citedreferenceLichstein, J. W. 2007. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology 188: 117 – 131.
dc.identifier.citedreferenceLozupone, C., and R. Knight. 2005. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Applied and Environmental Microbiology 71: 8228 – 8235.
dc.identifier.citedreferenceLukas, L. E., B. E. Nelson, and R. L. Hartman. 2012. A floristic inventory of vascular plants of the Medicine Bow National Forest and vicinity, southeastern Wyoming, USA. Journal of the Botanical Research Institute of Texas 6: 759 – 787.
dc.identifier.citedreferenceMacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton, USA.
dc.identifier.citedreferenceMachac, A., R. Janda, R. R. Dunn, and N. J. Sanders. 2011. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34: 364 – 371.
dc.identifier.citedreferenceMarx, H. E., D. E. Giblin, P. W. Dunwiddie, and D. C. Tank. 2016. Deconstructing Darwin’s Naturalization Conundrum in the San Juan Islands using community phylogenetics and functional traits. Diversity and Distributions 22: 318 – 331.
dc.identifier.citedreferenceMarx, H. E., C. Dentant, J. Renaud, R. Delunel, D. C. Tank, and S. Lavergne. 2017. Riders in the sky (islands): Using a mega‐phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. Journal of Biogeography 44: 2618 – 2630.
dc.identifier.citedreferenceMarx, H. E., M. Richards, G. M. Johnson, and D. C. Tank. 2019. Data from: Increasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness. Dryad Digital Repository. https://doi.org/10.5061/dryad.d06j48t.
dc.identifier.citedreferenceMayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085 – 1093.
dc.identifier.citedreferenceMazel, F., T. J. Davies, L. Gallien, J. Renaud, M. Groussin, T. Münkemüller, and W. Thuiller. 2016. Influence of tree shape and evolutionary time‐scale on phylogenetic diversity metrics. Ecography 39: 913 – 920.
dc.identifier.citedreferenceMiller, M. A., W. Pfeiffer, and T. Schwartz. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees: Presented at the Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp. 958 – 8.
dc.identifier.citedreferenceMorueta‐Holme, N., K. Engemann, P. Sandoval‐Acuña, J. D. Jonas, R. M. Segnitz, and J.‐C. Svenning. 2015. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences, USA 112: 12741 – 12745.
dc.identifier.citedreferenceMunkemüller, T., F. C. Boucher, W. Thuiller, and S. Lavergne. 2015. Phylogenetic niche conservatism—common pitfalls and ways forward. Functional Ecology 29: 627 – 639.
dc.identifier.citedreferenceOksanen, J. F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, et al. 2017. vegan: Community Ecology Package. R package version 2.4‐3. https://CRAN.R-project.org/package=vegan.
dc.identifier.citedreferencePark, D. S., S. Worthington, and Z. Xi. 2018. Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Molecular Ecology 27: 1296 – 1308.
dc.identifier.citedreferencePattengale, N. D., M. Alipour, O. R. P. Bininda‐Emonds, B. M. E. Moret, and A. Stamatakis. 2009. How Many Bootstrap Replicates Are Necessary? In S Batzoglou, ed. Research in Computational Molecular Biology: 13th Annual International Conference, RECOMB 2009. Tucson, AZ, USA. May 18‐21, 2009. Berlin, Germany & Heidelberg, Germany: Springer Berlin Heidelberg, pp. 184 – 200.
dc.identifier.citedreferencePauli, H., M. Gottfried, S. Dullinger, O. Abdaladze, M. Akhalkatsi, J. L. B. Alonso, G. Coldea, et al. 2012. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 336: 353 – 355.
dc.identifier.citedreferencePavoine, S., and M. B. Bonsall. 2010. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86: 792 – 812.
dc.identifier.citedreferencePellissier, L., N. Alvarez, A. Espíndola, J. Pottier, A. Dubuis, J.‐N. Pradervand, and A. Guisan. 2013. Phylogenetic alpha and beta diversities of butterfly communities correlate with climate in the western Swiss Alps. Ecography 36: 541 – 550.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.