Show simple item record

Counter-Electrojet Occurrence as Observed From C/NOFS Satellite and Ground-Based Magnetometer Data Over the African and American Sectors

dc.contributor.authorHabarulema, John Bosco
dc.contributor.authorLefebvre, Gabrielle
dc.contributor.authorMoldwin, Mark B.
dc.contributor.authorKatamzi‐joseph, Zama T
dc.contributor.authorYizengaw, Endawoke
dc.date.accessioned2019-09-30T15:30:09Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-09-30T15:30:09Z
dc.date.issued2019-07
dc.identifier.citationHabarulema, John Bosco; Lefebvre, Gabrielle; Moldwin, Mark B.; Katamzi‐joseph, Zama T ; Yizengaw, Endawoke (2019). "Counter-Electrojet Occurrence as Observed From C/NOFS Satellite and Ground-Based Magnetometer Data Over the African and American Sectors." Space Weather 17(7): 1090-1104.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/151259
dc.description.abstractAn analysis of the counter-electrojet occurrence (CEJ) during 2008-2014 is presented for the African and American sectors based on local daytime (0700-1700 LT) observations from the Communications and Navigation Outage Forecasting System (C/NOFS) vertical ion plasma drift (equivalent to vertical Eà B at an altitude of about 400 km) and ground-based magnetometers. Using quiet time (Kp- 3) data, differences and/or similarities between the two data sets with reference to local time and seasonal dependence are established. For the first time, it is shown that C/NOFS satellite data are consistent with magnetometer observations in identifying CEJ occurrences during all seasons. However, C/NOFS satellite data show higher CEJ occurrence rate for almost all seasons. With respect to local time, C/NOFS satellite observes more CEJ events than magnetometer observations by average of about 20% and 40% over the American and African sectors, respectively, despite both data sets showing similar trends in CEJ identification. Therefore, when a space weather event occurs, it is important to first establish the original variability nature and/or magnitude of the eastward electric field in equatorial regions before attributing the resulting changes to solar wind-magnetosphere and ionosphere coupling processes since CEJ events can be present even during quiet conditions.Key PointsA statistical trend of CEJ events using C/NOFS satellite vertical ion plasma drift and magnetometer observations has been establishedBoth C/NOFS satellite and magnetometer data show higher CEJ occurrence rate over the African sector than the American sectorC/NOFS satellite data exhibit more CEJ events than magnetometer data by average of 20% (40%) over the American (African) sector
dc.publisherJohn Wiley
dc.titleCounter-Electrojet Occurrence as Observed From C/NOFS Satellite and Ground-Based Magnetometer Data Over the African and American Sectors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151259/1/swe20897.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151259/2/swe20897_am.pdf
dc.identifier.doi10.1029/2019SW002236
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceStolle, C., Manoj, C., Lühr, H., Maus, S., & Alken, P. ( 2008 ). Estimating the daytime equatorial ionization anomaly strength from electric field proxies. Journal of Geophysical Research, 113, A09310. https://doi.org/10.1029/2007JA012781
dc.identifier.citedreferenceHuber, P. J, & Ronchetti, E. M. ( 2009 ). Robust statistics: Second edition. New York: John Wiley.
dc.identifier.citedreferenceRastogi, R. G. ( 1974a ). Westward equatorial electrojet during daytime hours. Journal of Geophysical Research, 79 ( 10 ), 1503 - 1512.
dc.identifier.citedreferenceRastogi, R. G. ( 1974b ). Lunar effects in the counter electrojet near the magnetic equator. Journal of Atmospheric and Terrestrial Physics, 36 ( 1 ), 167 - 170. https://doi.org/10.1016/0021-9169(74)90074-9
dc.identifier.citedreferenceRodrigues, F. S., Smith, J. M., Milla, M., & Stoneback, R. A. ( 2015 ). Daytime ionospheric equatorial vertical drifts during the 2008-2009 extreme solar minimum. Journal of Geophysical Research: Space Physics, 120, 1452 - 1459. https://doi.org/10.1002/2014JA020478
dc.identifier.citedreferenceSiddiqui, T. A., Maute, A., Pedatella, N., Yamazaki, Y., Lühr, H., & Stolle, C. ( 2018 ). On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings. Annales Geophysicae, 36, 1545 - 1562.
dc.identifier.citedreferenceSingh, D., Gurubaran, S., & He, M. ( 2018 ). Evidence for the influence of DE3 tide on the occurrence of equatorial counterelectrojet. Geophysical Research Letters, 45, 2145 - 2150. https://doi.org/10.1002/2018GL077076
dc.identifier.citedreferenceSoares, G., Yamazaki, Y., Matzka, J., Pinheiro, K., Morschhauser, A., Stolle, A., & Alken, P. ( 2018 ). Equatorial counter electrojet longitudinal and seasonal variability in the American sector. Journal of Geophysical Research: Space Physics, 123, 9906 - 9920. https://doi.org/10.1029/2018JA025968
dc.identifier.citedreferenceStening, R. J., Meek, C. E., & Manson, A. H. ( 1996 ). Upper atmosphere wind systems during reverse equatorial electrojet events. Geophysical Research Letters, 23 ( 22 ), 3243 - 3246.
dc.identifier.citedreferenceHuber, P. J ( 1981 ). Robust statistics. New York: John Wiley.
dc.identifier.citedreferenceStoneback, R. A., Davidson, R. L., & Heelis, R. L. ( 2012 ). Ion drift meter calibration and photoemission correction for the C/NOFS satellite. Journal of Geophysical Research, 117, A08323. https://doi.org/10.1029/2012JA017636
dc.identifier.citedreferenceStoneback, R., Heelis, R., Burrell, A., Coley, W., Fejer, B. G., & Pacheco, E. ( 2011 ). Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. Journal of Geophysical Research, 116, A12327. https://doi.org/10.1029/2011JA016712
dc.identifier.citedreferenceValladares, C. E., & Chau, J. L. ( 2012 ). The Low-Latitude Ionosphere Sensor Network: Initial results. Radio Science, 47, RS0L17. https://doi.org/10.1029/2011RS004978
dc.identifier.citedreferenceVenkatesh, K., Fagundes, P. R., Prasad, D. S. V. V. D., Denardini, C. M., de Abreu, A. J., de Jesus, R., & Gende, M. ( 2015 ). Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. Journal of Geophysical Research: Space Physics, 120, 9117 - 9131. https://doi.org/10.1002/2015JA021307
dc.identifier.citedreferenceVineeth, C., Pant, T. K., & Sridharan, R. ( 2009 ). Equatorial counter electrojets and polar stratospheric sudden warmings-A classical example of high latitude-low latitude coupling? Annales de Geophysique, 27, 3147 - 3153.
dc.identifier.citedreferenceYizengaw, E., & Groves, K. M. ( 2018 ). Longitudinal and seasonal variability of equatorial ionospheric irregularities and electrodynamics. Space Weather, 16, 946 - 968. https://doi.org/10.1029/2018SW001980
dc.identifier.citedreferenceYizengaw, E., & Moldwin, M. B. ( 2009 ). African Meridian B-field Education and Research (AMBER) array. Earth, Moon, and Planets, 104, 237 - 246. https://doi.org/10.1007/s11038-008-9287-2
dc.identifier.citedreferenceYizengaw, E., Moldwin, M. B., Mebrahtu, A., Damtie, B., Zesta, E., Valladares, C. E., & Doherty, P. H. ( 2011 ). Comparison of storm time equatorial ionospheric electrodynamics in the African and American sectors. Journal of Atmospheric and Solar-Terrestrial Physics, 73 ( 1 ), 156 - 163.
dc.identifier.citedreferenceYizengaw, E., Moldwin, M. B., Zesta, E., Biouele, C. M., Damtie, B., Mebrahtu, A., Rabiu, B., Valladares, C. E., & Stoneback, R. ( 2014 ). The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Annales Geophysicae, 32, 231 - 238.
dc.identifier.citedreferenceYizengaw, E., Zesta, E., Moldwin, M. B., Damtie, B., Mebrahtu, A., Valladares, C. E., & Pfaff, R. F. ( 2012 ). Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics. Journal of Geophysical Research, 117, A07312. https://doi.org/10.1029/2011JA017454
dc.identifier.citedreferenceZhou, Y.-L., Lühr, H., Xu, H.-W., & Alken, P. ( 2018 ). Comprehensive analysis of the counter equatorial electrojet: Average properties as deduced from CHAMP observations. Journal of Geophysical Research: Space Physics, 123, 5159 - 5181. https://doi.org/10.1029/2018JA025526
dc.identifier.citedreferenceGustafsson, G., Papitashvili, N. E., & Papitashvili, V. O. ( 1992 ). A revised corrected geomagnetic coordinate system for epochs 1985 and 1990. Journal of Atmospheric and Terrestrial Physics, 54, 1609 - 1631.
dc.identifier.citedreferenceHabarulema, J. B., Dubazane, M. B., Katamzi-Joseph, Z. T., Yizengaw, E., Moldwin, M. B., & Uwamahoro, J. C. ( 2018 ). Long-term estimation of diurnal vertical EÃ B drift velocities using C/NOFS and ground-based magnetometer observations. Journal of Geophysical Research: Space Physics, 6996 - 7010. https://doi.org/10.1029/2018JA025685
dc.identifier.citedreferenceHanuise, C., Mazaudier, C., Vila, P., Blanc, M., & Crochet, M. ( 1983 ). Global dynamo simulation of ionospheric currents and their connection with the equatorial electrojet and counter-electrojet: A case study. Journal of Geophysical Research, 88 ( A1 ), 253 - 270.
dc.identifier.citedreferenceAlex, S., & Mukherjee, S. ( 2001 ). Local time dependence of the equatorial counter electrojet effect in a narrow longitudinal belt. Earth, Planets and Space, 53, 1151 - 1161.
dc.identifier.citedreferenceAnandarao, B. G. ( 1976 ). Effects of gravity wave winds and wind shears on equatorial electrojet. Geophysical Research Letters, 3 ( 9 ), 545 - 548.
dc.identifier.citedreferenceAnderson, D., Anghel, A., Chau, J., & Veliz, O. ( 2004 ). Daytime vertical E Ã B drift velocities inferred from ground-based magnetometer observations at low latitudes. Space Weather, 2, S11001. https://doi.org/10.1029/2004SW000095
dc.identifier.citedreferenceAnderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., & Kudeki, E. ( 2002 ). Estimating daytime vertical E Ã B drift velocities in the equatorial F region using ground-based magnetometer observations. Geophysical Research Letters, 29 ( 12 ), 1596. https://doi.org/10.1029/2001GL014562
dc.identifier.citedreferenceBeer, T. ( 1978 ). On atmospheric wave generation by the terminator. Planetary and Space Science, 26 ( 2 ), 185 - 188.
dc.identifier.citedreferenceChandrasekhar, N. P., Archana, R. K., Nagarajan, N., & Arora, K. ( 2017 ). Variability of equatorial counter electrojet signatures in the Indian region. Journal of Geophysical Research: Space Physics, 122, 2185 - 2201. https://doi.org/10.1002/2016JA022904
dc.identifier.citedreferenceChen, Y., Liu, L., & Wan, W. ( 2011 ). Does the F 10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007-2009? Journal of Geophysical Research, 116, A04304. https://doi.org/10.1029/2010JA016301
dc.identifier.citedreferenceCohen, Y., & Achache, J. ( 1990 ). New global vector magnetic anomaly maps derived from MAGSAT data. Journal of Geophysical Research, 95 ( B7 ), 10,783 - 10,800.
dc.identifier.citedreferenceDubazane, M. B, & Habarulema, J. B. ( 2018 ). An empirical model of vertical plasma drift over the African sector. Space Weather, 16, 619 - 635. https://doi.org/10.1029/2018SW001820
dc.identifier.citedreferenceEzquer, R. G., López, J. L., Scidá, L. A., Cabrera, M. A., Zolesi, B., Bianchi, C., Pezzopane, M., Zuccheretti, E., & Mosert, M. ( 2014 ). Behaviour of ionospheric magnitudes of F 2 region over Tucumán during a deep solar minimum and comparison with the IRI 2012 model predictions. Journal of Atmospheric and Solar-Terrestrial Physics, 107, 89 - 98. https://doi.org/10.1016/j.jastp.2013.11.010
dc.identifier.citedreferenceFambitakoye, O., Mayaud, P. N., & Richmond, A. D. ( 1976 ). Equatorial electrojet and regular daily variation S R - III. Comparison of observations with a physical model. Journal of Atmospheric and Terrestrial Physics, 38 ( 2 ), 113 - 121. https://doi.org/10.1016/0021-9169(76)90118-5
dc.identifier.citedreferenceFang, T. W., Richmond, A. D., Liu, J. Y., & Maute, A. ( 2008 ). Wind dynamo effects on ground magnetic perturbations and vertical drifts. Journal of Geophysical Research, 113, A11313. https://doi.org/10.1029/2008JA013513
dc.identifier.citedreferenceFejer, B. G., Jensen, J. W., & Su, S.-Y. ( 2008 ). Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. Journal of Geophysical Research, 113, A05304. https://doi.org/10.1029/2007JA012801
dc.identifier.citedreferenceFejer, B. G., & Scherliess, L. ( 1998 ). Mid- and low-latitude prompt ionospheric zonal plasma drifts. Geophysical Research Letters, 25 ( 16 ), 3071 - 3074.
dc.identifier.citedreferenceForbes, J. M., Bruinsma, S. L., Miyoshi, Y., & Fujiwara, H. ( 2008 ). A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite. Geophysical Research Letters, 35, L14802. https://doi.org/10.1029/2008GL034075
dc.identifier.citedreferenceGouin, G. ( 1962 ). Reversal of the magnetic daily variation at Addis Ababa. Nature, 193, 1145 - 1146.
dc.identifier.citedreferenceKikuchi, T., Lühr, H., Schlegel, K., Tachihara, H., Shinohara, M., & Kitamura, T.-I. ( 2000 ). Penetration of auroral electric fields to the equator during a substorm. Journal of Geophysical Research, 105 ( A10 ), 23,251 - 23,261.
dc.identifier.citedreferenceKumar, S., Veenadhari, B., Tulasi Ram, S., Su, S.-Y., & Kikuchi, T. ( 2016 ). Possible relationship between the equatorial electrojet (EEJ) and daytime vertical E Ã B drift velocities in F region from ROCSAT observations. Advances in Space Research, 58, 1168 - 1176. https://doi.org/10.1016/j.asr.2016.06.009
dc.identifier.citedreferenceLomidze, L., Knudsen, D. J., Burchill, J., Kouznetsov, A., & Buchert, S. C. ( 2017 ). Calibration and validation of swarm plasma densities and electron temperatures using ground-based radars and satellite radio-occultation measurements. Radio Science, 53, 15 - 36. https://doi.org/10.1002/2017RS006415
dc.identifier.citedreferenceLühr, H., Maus, S., & Rother, M. ( 2004 ). Noon-time equatorial electrojet: Its spatial features as determined by the CHAMP satellite. Journal of Geophysical Research, 109, A01306. https://doi.org/10.1029/2002JA009656
dc.identifier.citedreferenceMarriott, R. T., Richmond, A. D., & Venkateswaran, S. V. ( 1979 ). The quiet-time equatorial electrojet and counter-electrojet. Journal of Geomagnetism and Geoelectricity, 31, 311 - 340.
dc.identifier.citedreferenceMayaud, P. N. ( 1977 ). The equatorial counter-electrojet-A review of its geomagnetic aspects. Journal of Atmospheric and Terrestrial Physics, 39 ( 9-10 ), 1055 - 1070. https://doi.org/10.1016/0021-9169(77)90014-9
dc.identifier.citedreferencePatra, A. K., Chaitanya, P. P., Otsuka, Y., Yokoyama, T., Yamamoto, M., Stoneback, R. A., & Heelis, R. A. ( 2014 ). Vertical E Ã B drifts from radar and C/NOFS observations in the Indian and Indonesian sectors: Consistency of observations and model. Journal of Geophysical Research: Space Physics, 119, 3777 - 3788. https://doi.org/10.1002/2013JA019732
dc.identifier.citedreferencePatra, A. K., Yokoyama, T., Otsuka, Y., & Yamamoto, M. ( 2008 ). Daytime 150 km echoes observed with the Equatorial Atmosphere Radar in Indonesia: First results. Geophysical Research Letters, 119, L06101. https://doi.org/10.1029/2007GL033130
dc.identifier.citedreferenceRabiu, A. B., Folarin, O. O., Uozumi, T., Hamid, N. S. A., & Yoshikawa, A. ( 2017 ). Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. Annales Geophysicae, 35, 535 - 545. https://doi.org/10.5194/angeo-35-535-2017
dc.identifier.citedreferenceRaghavarao, R., & Anandarao, B. G. ( 1980 ). Vertical winds as a plausible cause for equatorial counter electrojet. Geophysical Research Letters, 7 ( 5 ), 357 - 360.
dc.identifier.citedreferenceRangarajan, G. K., & Rastogi, R. G. ( 1993 ). Longitudinal difference in magnetic field variations associated with quiet day counter electrojet. Journal of Geomagnetism and Geoelectricity, 45 ( 8 ), 649 - 656.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.