Show simple item record

Environmental variables that ameliorate extinction learning deficits in the 129S1/SvlmJ mouse strain

dc.contributor.authorCazares, Victor A.
dc.contributor.authorRodriguez, Genesis
dc.contributor.authorParent, Rachel
dc.contributor.authorOuillette, Lara
dc.contributor.authorGlanowska, Katarzyna M.
dc.contributor.authorMoore, Shannon J.
dc.contributor.authorMurphy, Geoffrey G.
dc.date.accessioned2019-09-30T15:32:20Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2019-09-30T15:32:20Z
dc.date.issued2019-09
dc.identifier.citationCazares, Victor A.; Rodriguez, Genesis; Parent, Rachel; Ouillette, Lara; Glanowska, Katarzyna M.; Moore, Shannon J.; Murphy, Geoffrey G. (2019). "Environmental variables that ameliorate extinction learning deficits in the 129S1/SvlmJ mouse strain." Genes, Brain and Behavior 18(7): n/a-n/a.
dc.identifier.issn1601-1848
dc.identifier.issn1601-183X
dc.identifier.urihttps://hdl.handle.net/2027.42/151347
dc.publisherBlackwell Publishing Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpost‐traumatic stress disorder (PTSD)
dc.subject.otheranxiety
dc.subject.otherextinction learning
dc.subject.otherfear learning
dc.subject.othernovelty‐facilitated extinction
dc.subject.otherstrain differences
dc.subject.other129S1
dc.subject.otherC57BL/6
dc.titleEnvironmental variables that ameliorate extinction learning deficits in the 129S1/SvlmJ mouse strain
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151347/1/gbb12575.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151347/2/gbb12575_am.pdf
dc.identifier.doi10.1111/gbb.12575
dc.identifier.sourceGenes, Brain and Behavior
dc.identifier.citedreferenceNuñez JR, Anderton CR, Renslow RS. Optimizing colormaps with consideration for color vision deficiency to enable accurate interpretation of scientific data. PLOS One. 2018; 13 ( 7 ): e0199239.
dc.identifier.citedreferenceQuirk GJ, Armony JL, LeDoux JE. Fear conditioning enhances different temporal components of tone‐evoked spike trains in auditory cortex and lateral amygdala. Neuron. 1997; 19 ( 3 ): 613 ‐ 624.
dc.identifier.citedreferenceBang SJ, Allen TA, Jones LK, Boguszewski P, Brown TH. Asymmetrical stimulus generalization following differential fear conditioning. Neurobiol Learn Mem. 2008; 90 ( 1 ): 200 ‐ 216.
dc.identifier.citedreferenceIto W et al. Enhanced generalization of auditory conditioned fear in juvenile mice. Learn Mem. 2009; 16 ( 3 ): 187 ‐ 192.
dc.identifier.citedreferenceMcKinney BC, Murphy GG. The L‐type voltage‐gated calcium channel Cav1.3 mediates consolidation, but not extinction, of contextually conditioned fear in mice. Learn Mem. 2006; 13 ( 5 ): 584 ‐ 589.
dc.identifier.citedreferenceMcKinney BC, Chow CY, Meisler MH, Murphy GG. Exaggerated emotional behavior in mice heterozygous null for the sodium channel Scn8a (Nav1.6). Genes Brain Behav. 2008a; 7 ( 6 ): 629 ‐ 638.
dc.identifier.citedreferenceMcKinney BC, Sze W, White JA, Murphy GG. L‐type voltage‐gated calcium channels in conditioned fear: a genetic and pharmacological analysis. Learn Mem. 2008b; 15 ( 5 ): 326 ‐ 334.
dc.identifier.citedreferenceTemme SJ, Murphy GG. The L‐type voltage‐gated calcium channel Ca V1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala. Learn Mem. 2017; 24 ( 11 ): 580 ‐ 588.
dc.identifier.citedreferenceKrueger JN, Moore SJ, Parent R, McKinney BC, Lee A, Murphy GG. A novel mouse model of the aged brain: over‐expression of the L‐type voltage‐gated calcium channel CaV1.3. Behav Brain Res. 2017; 322: 241 ‐ 249.
dc.identifier.citedreferencePerkowski JJ, Murphy GG. Deletion of the mouse homolog of KCNAB2, a gene linked to monosomy 1p36, results in associative memory impairments and amygdala hyperexcitability. J Neurosci. 2011; 31 ( 1 ): 46 ‐ 54.
dc.identifier.citedreferenceCohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York, NY: Academic Press; 1988.
dc.identifier.citedreferenceR Development Core Team. R: A language and environment for statistical computing. (R version 3.5.2) 2016. https://www.R-project.org. Accessed December 20, 2018.
dc.identifier.citedreferenceSingmann, H., Bolker, B. & Westfall, J., 2015. afex: Analysis of Factorial Experiments (R package version 0.13–145). https://CRAN.R-project.org/package=afex. Accessed December 20, 2018.
dc.identifier.citedreferenceWickham, H., 2010. ggplot2: Elegant Graphics for Data Analysis (Use R!). New York, NY: Springer‐Verlag.
dc.identifier.citedreferenceWickham, H, François, R, Henry, L, Müller, K. 2015. dplyr: A Grammar of Data Manipulation (R package version 0.7.6). https://CRAN.Rproject.org/package=dplyr. Accessed December 20, 2018.
dc.identifier.citedreferenceGrewe BF, Gründemann J, Kitch LJ, et al. Neural ensemble dynamics underlying a long‐term associative memory. Nature. 2017; 543 ( 7647 ): 670 ‐ 675.
dc.identifier.citedreferenceCrawley JN, Belknap JK, Collins A, et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl). 1997; 132 ( 2 ): 107 ‐ 124.
dc.identifier.citedreferenceDockstader CL, van der Kooy D. Mouse strain differences in opiate reward learning are explained by differences in anxiety, not reward or learning. J Neurosci. 2001; 21 ( 22 ): 9077 ‐ 9081.
dc.identifier.citedreferenceVõikar V, Kõks S, Vasar E, Rauvala H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav. 2001; 72 ( 1–2 ): 271 ‐ 281.
dc.identifier.citedreferenceMartorell AJ, Paulson AL, Suk HJ, et al. Multi‐sensory gamma stimulation ameliorates Alzheimer’s‐associated pathology and improves cognition. Cell. 2019; 177: 256 ‐ 271.e22.
dc.identifier.citedreferenceBang SJ, Brown TH. Perirhinal cortex supports acquired fear of auditory objects. Neurobiol Learn Mem. 2009; 92 ( 1 ): 53 ‐ 62.
dc.identifier.citedreferenceFurtak SC, Allen TA, Brown TH. Single‐unit firing in rat perirhinal cortex caused by fear conditioning to arbitrary and ecological stimuli. J Neurosci. 2007; 27 ( 45 ): 12277 ‐ 12291.
dc.identifier.citedreferenceLaurent V, Westbrook RF. Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learn Mem. 2008; 15 ( 9 ): 657 ‐ 666.
dc.identifier.citedreferenceLaurent V, Marchand AR, Westbrook RF. The basolateral amygdala is necessary for learning but not relearning extinction of context conditioned fear. Learn Mem. 2008; 15 ( 5 ): 304 ‐ 314.
dc.identifier.citedreferenceLaurent V, Westbrook RF. Role of the basolateral amygdala in the reinstatement and extinction of fear responses to a previously extinguished conditioned stimulus. Learn Mem. 2010; 17 ( 2 ): 86 ‐ 96.
dc.identifier.citedreferencePitman RK, Delahanty DL. Conceptually driven pharmacologic approaches to acute trauma. CNS Spectr. 2005; 10 ( 2 ): 99 ‐ 106.
dc.identifier.citedreferenceTsai L‐H, Gräff J. On the resilience of remote traumatic memories against exposure therapy‐mediated attenuation. EMBO Rep. 2014; 15 ( 8 ): 853 ‐ 861.
dc.identifier.citedreferenceDunsmoor JE, Kroes MCW, Li J, Daw ND, Simpson HB, Phelps EA. Role of human ventromedial prefrontal cortex in learning and recall of enhanced extinction. J Neurosci. 2019; 2713 ‐ 2718.
dc.identifier.citedreferenceLoos M, Koopmans B, Aarts E, et al. Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home‐cage monitoring. PLOS One. 2014; 9 ( 9 ): e108563.
dc.identifier.citedreferenceFenster RJ, LAM L, Ressler KJ, Suh J. Brain circuit dysfunction in post‐traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018; 19: 535 ‐ 551.
dc.identifier.citedreferenceMilad MR, Pitman RK, Ellis CB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009; 66 ( 12 ): 1075 ‐ 1082.
dc.identifier.citedreferencePavlov IP. Conditional Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford, England: Oxford University Press; 1927.
dc.identifier.citedreferenceChhatwal JP, Myers KM, Ressler KJ, Davis M. Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci. 2005; 25 ( 2 ): 502 ‐ 506.
dc.identifier.citedreferenceHerry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Lüthi A. Neuronal circuits of fear extinction. Eur J Neurosci. 2010; 31 ( 4 ): 599 ‐ 612.
dc.identifier.citedreferenceLikhtik E, Popa D, Apergis‐Schoute J, Fidacaro GA, Paré D. Amygdala intercalated neurons are required for expression of fear extinction. Nature. 2008; 454 ( 7204 ): 642 ‐ 645.
dc.identifier.citedreferenceMilad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002; 420 ( 6911 ): 70 ‐ 74.
dc.identifier.citedreferenceAmano T, Unal CT, Pare D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci. 2010; 13 ( 4 ): 489 ‐ 494.
dc.identifier.citedreferenceAn B, Kim J, Park K, Lee S, Song S, Choi S. Amount of fear extinction changes its underlying mechanisms. Elife. 2017; 6: 489.
dc.identifier.citedreferenceChoi DC, Maguschak KA, Ye K, Jang SW, Myers KM, Ressler KJ. Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc Natl Acad Sci U S A. 2010; 107 ( 6 ): 2675 ‐ 2680.
dc.identifier.citedreferenceLin H‐C, Mao S‐C, Gean P‐W. Block of gamma‐aminobutyric acid‐A receptor insertion in the amygdala impairs extinction of conditioned fear. Biol Psychiatry. 2009; 66 ( 7 ): 665 ‐ 673.
dc.identifier.citedreferenceRescorla R, Wagner A. A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement. New York, NY: Appletone‐Century‐Crofts; 1972.
dc.identifier.citedreferenceDalton GL, Wang YT, Floresco SB, Phillips AG. Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology. 2008; 33 ( 10 ): 2416 ‐ 2426.
dc.identifier.citedreferenceKim J, Lee S, Park K, et al. Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A. 2007; 104 ( 52 ): 20955 ‐ 20960.
dc.identifier.citedreferenceLin C‐H, Lee C‐C, Gean P‐W. Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol. 2003; 63 ( 1 ): 44 ‐ 52.
dc.identifier.citedreferenceMao S‐C, Chang CH, Wu CC, Orejarena MJ, Manzoni OJ, Gean PW. Inhibition of spontaneous recovery of fear by mGluR5 after prolonged extinction training. PLOS One. 2013; 8 ( 3 ): e59580.
dc.identifier.citedreferenceKar N. Cognitive behavioral therapy for the treatment of post‐traumatic stress disorder: a review. Neuropsychiatr Dis Treat. 2011; 7: 167 ‐ 181.
dc.identifier.citedreferenceLogue MW, Amstadter AB, Baker DG, et al. The psychiatric genomics consortium posttraumatic stress disorder workgroup: posttraumatic stress disorder enters the age of large‐scale genomic collaboration. Neuropsychopharmacology. 2015; 40 ( 10 ): 2287 ‐ 2297.
dc.identifier.citedreferenceAfifi TO, Asmundson GJG, Taylor S, Jang KL. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies. Clin Psychol Rev. 2010; 30 ( 1 ): 101 ‐ 112.
dc.identifier.citedreferenceKessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry. 1995; 52 ( 12 ): 1048 ‐ 1060.
dc.identifier.citedreferenceHolmes A, Singewald N. Individual differences in recovery from traumatic fear. Trends Neurosci. 2013; 36 ( 1 ): 23 ‐ 31.
dc.identifier.citedreferenceMacPherson K, Whittle N, Camp M, Gunduz‐Cinar O, Singewald N, Holmes A. Temporal factors in the extinction of fear in inbred mouse strains differing in extinction efficacy. Biol Mood Anxiety Disord. 2013; 3 ( 1 ): 13.
dc.identifier.citedreferenceWhittle N, Schmuckermair C, Gunduz Cinar O, et al. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model. Neuropharmacology. 2013; 64: 414 ‐ 423.
dc.identifier.citedreferenceCamp MC, MacPherson KP, Lederle L, et al. Genetic strain differences in learned fear inhibition associated with variation in neuroendocrine, autonomic, and amygdala dendritic phenotypes. Neuropsychopharmacology. 2012; 37 ( 6 ): 1534 ‐ 1547.
dc.identifier.citedreferenceTemme SJ, Bell RZ, Pahumi R, Murphy GG. Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes. Front Behav Neurosci. 2014; 8: 282.
dc.identifier.citedreferenceCamp M, Norcross M, Whittle N, et al. Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain. Genes Brain Behav. 2009; 8 ( 8 ): 744 ‐ 752.
dc.identifier.citedreferenceHefner K, Whittle N, Juhasz J, et al. Impaired fear extinction learning and cortico‐amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci. 2008; 28 ( 32 ): 8074 ‐ 8085.
dc.identifier.citedreferenceGiustino TF, Maren S. The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci. 2015; 9: 758 ‐ 720.
dc.identifier.citedreferenceGunduz‐Cinar O, Brockway E, Lederle L, et al. Identification of a novel gene regulating amygdala‐mediated fear extinction. Mol Psychiatry. 2019; 24: 601 ‐ 612.
dc.identifier.citedreferenceWhittle N, Hauschild M, Lubec G, Holmes A, Singewald N. Rescue of impaired fear extinction and normalization of cortico‐amygdala circuit dysfunction in a genetic mouse model by dietary zinc restriction. J Neurosci. 2010; 30 ( 41 ): 13586 ‐ 13596.
dc.identifier.citedreferenceWhittle N, Maurer V, Murphy C, et al. Enhancing dopaminergic signaling and histone acetylation promotes long‐term rescue of deficient fear extinction. Transl Psychiatry. 2016; 6 ( 12 ): e974 ‐ e974.
dc.identifier.citedreferenceBlair HT, Sotres‐Bayon F, Moita MAP, Ledoux JE. The lateral amygdala processes the value of conditioned and unconditioned aversive stimuli. Neuroscience. 2005; 133 ( 2 ): 561 ‐ 569.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.