Show simple item record

Chemical modification in and on single phase [NiO]0.5[Al2O3]0.5 nanopowders produces “chocolate chip‐like” Nix@[NiO]0.5‐x[Al2O3]0.5 nanocomposite nanopowders

dc.contributor.authorWang, Fei
dc.contributor.authorSun, Kai
dc.contributor.authorYi, Eongyu
dc.contributor.authorLaine, Richard M.
dc.date.accessioned2019-10-30T15:29:51Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2019-10-30T15:29:51Z
dc.date.issued2019-12
dc.identifier.citationWang, Fei; Sun, Kai; Yi, Eongyu; Laine, Richard M. (2019). "Chemical modification in and on single phase [NiO]0.5[Al2O3]0.5 nanopowders produces “chocolate chip‐like” Nix@[NiO]0.5‐x[Al2O3]0.5 nanocomposite nanopowders." Journal of the American Ceramic Society 102(12): 7145-7153.
dc.identifier.issn0002-7820
dc.identifier.issn1551-2916
dc.identifier.urihttps://hdl.handle.net/2027.42/151834
dc.description.abstractPhase‐pure [NiO]0.5[Al2O3]0.5 spinel nanoparticles (NPs) with limited aggregation were obtained via liquid‐feed flame spray pyrolysis (LF‐FSP) by combusting metalloorganic precursor solutions. Thereafter “chocolate chip‐like” Nix[NiO0.5‐x][Al2O3]0.5 nanoparticles consisting of primary [NiO0.5‐x][Al2O3]0.5 particles with average particle sizes of 40‐60 nm decorated with Ni metal particles (<10 nm in diameter) dispersed on the surface were synthesized by heat treating the spinel NPs at 800°C/7 h in flowing 5% H2:N2 100 mL/min in a fluidized bed reactor. The synthesized materials were characterized using TEM, XRD, FTIR, and TGA/DTA. The Ni depleted areas consist primarily of γ‐Al2O3. The Ni content (800°C) was determined by TGA to be ≈11.3 wt.% based on TGA oxidation behavior. The successful synthesis of such nanocomposites with limited aggregation on a high temperature support provides a facile route to synthesize well‐defined NP catalysts. This work serves as a baseline study for an accompanying paper, wherein thin, flexible, dense films made from these same NPs are used as regenerable catalysts for carbon nanotube syntheses.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherliquid feed‐flame spray pyrolysis
dc.subject.othernickel aluminate
dc.subject.otherphase pure spinel nanopowders
dc.subject.othernanocomposites
dc.titleChemical modification in and on single phase [NiO]0.5[Al2O3]0.5 nanopowders produces “chocolate chip‐like” Nix@[NiO]0.5‐x[Al2O3]0.5 nanocomposite nanopowders
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151834/1/jace16632_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151834/2/jace16632.pdf
dc.identifier.doi10.1111/jace.16632
dc.identifier.sourceJournal of the American Ceramic Society
dc.identifier.citedreferenceSchimmoeller B, Schulz H, Ritter A, Reitzmann A, Kraushaarczarnetzki B, Baiker A, et al. Structure of flame‐made vanadia/titania and catalytic behavior in the partial oxidation of o‐xylene. J Catal. 2008; 256 ( 1 ): 74 – 83.
dc.identifier.citedreferenceNeto A, Oliveira AC, Filho JM, Amadeo N, Dieuzeide ML, de Sousa FF, et al. Characterizations of nanostructured nickel aluminates as catalysts for conversion of glycerol: Influence of the preparation methods. Adv Powder Technol. 2017; 28 ( 1 ): 131 – 8.
dc.identifier.citedreferenceAchouri IE, Abatzoglou N, Fauteux‐Lefebvre C, Braidy N. Diesel steam reforming: Comparison of two nickel aluminate catalysts prepared by wet‐impregnation and co‐precipitation. Catal Today. 2013; 207: 13 – 20.
dc.identifier.citedreferenceNieva MA, Villaverde MM, Monzón A, Garetto TF, Marchi AJ. Steam‐methane reforming at low temperature on nickel‐based catalysts. Chem Eng J. 2014; 235: 158 – 66.
dc.identifier.citedreferenceYi JH, Kim JH, Koo HY, You NK, Kang YC, Lee JH. Nanosized LiMn 2 O 4 powders prepared by flame spray pyrolysis from aqueous solution. J Power Sources. 2011; 196 ( 5 ): 2858 – 62.
dc.identifier.citedreferenceDemirci S, Öztürk B, Yildirim S, Bakal F, Erol M, Sancakoğlu O, et al. Synthesis and comparison of the photocatalytic activities of flame spray pyrolysis and sol–gel derived magnesium oxide nano‐scale particles. Mater Sci Semicond Process. 2015; 34: 154 – 61.
dc.identifier.citedreferenceKim JH, Hong YJ, Park BK, Kang YC. Nano‐sized LiNi 0.5 Mn 1.5 O 4 cathode powders with good electrochemical properties prepared by high temperature flame spray pyrolysis. J Ind Eng Chem. 2013; 19 ( 4 ): 1204 – 8.
dc.identifier.citedreferenceKruis FE, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci. 1998; 29 ( 5–6 ): 511 – 35.
dc.identifier.citedreferenceWagner N, Svensson AM, Vullum‐Bruer F. Liquid‐feed flame spray pyrolysis as alternative synthesis for electrochemically active nano‐sized Li 2 MnSiO 4. Transl Mater Res. 2016; 3 ( 2 ): 025001.
dc.identifier.citedreferenceSuffner J, Wang D, Kübel C, Hahn H. Metastable phase formation during flame spray pyrolysis of ZrO(YO)–AlO nanoparticles. Scr Mater. 2011; 64 ( 8 ): 781 – 4.
dc.identifier.citedreferenceHinklin T, Toury B, Gervais C, Babonneau F, Gislason Jj, Morton Rw, et al. Liquid‐feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater. 2004; 16 ( 1 ): 21 – 30.
dc.identifier.citedreferenceLaine RM, Bickmore CR, Treadwell DR, Waldner KF. Ultrafine metal oxide powders by flame spray pyrolysis. U.S. Patent 5958361. 1999 Sep. 28.
dc.identifier.citedreferenceBaranwal R, Villar M, Garcia R, Laine R. Synthesis, characterization, and sintering behavior of nano‐mullite powder and powder compacts. J Am Ceram Soc. 2001; 84 ( 5 ): 951 – 61.
dc.identifier.citedreferenceJose AA, Julien M, Patrick S, Haiping S, Xiaoqing QP, Richard ML. Liquid‐feed flame spray pyrolysis as a method of producing mixed‐metal oxide nanopowders of potential interest as catalytic materials. nanopowders along the NiO−Al 2 O 3 tie line including (NiO) 0.22 (Al 2 O 3 ) 0.78, a new inverse spinel composition. Chem. Mater. 2006; 18 ( 9 ): 731 – 9.
dc.identifier.citedreferenceTaylor NJ, Stangeland‐Molo S, Laine RM. Bottom‐up vs reactive sintering of Al 2 O 3 ‐YAG‐YSZ composites via one or three‐phase nanoparticles (NPs). Bottom‐up processing wins this time. J Am Ceram Soc. 2017; 100 ( 6 ): 2429 – 38.
dc.identifier.citedreferenceLi B, Williams G, Rand SC, Hinklin T, Laine RM. Continuous‐wave ultraviolet laser action in strongly scattering Nd‐doped alumina. Opt Lett. 2002; 27 ( 6 ): 394 – 6.
dc.identifier.citedreferenceWilliams GR, Bayram SB, Rand SC, Hinklin T, Laine RM. Laser action in strongly scattering rare‐earth‐metal‐doped dielectric nanophosphors. Phys Rev A. 2001; 65 ( 1 ): 337 – 9.
dc.identifier.citedreferenceWeidenhof B, Reiser M, Stöwe K, Maier Wf, Kim M, Azurdia J, et al. High‐throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts. J Am Chem Soc. 2009; 131 ( 26 ): 9207 – 19.
dc.identifier.citedreferenceShirae H, Hasegawa K, Sugime H, Yi E, Laine RM, Noda S. Catalyst nucleation and carbon nanotube growth from flame‐synthesized Co‐Al‐O nanopowders at ten‐second time scale. Carbon. 2017; 114: 31 – 8.
dc.identifier.citedreferenceYou F, Sun K, Yi E, Nakatani E, Umehara N, Laine RM. Chemical modification at and within nanopowders: Synthesis of core‐shell Al 2 O 3 @TiON nanopowders via nitriding nano‐(TiO 2 ) 0.43 (Al 2 O 3 ) 0.57 powders in NH 3. J Am Ceram Soc. 2018; 101 ( 4 ): 1441 – 52.
dc.identifier.citedreferenceLiang B, Yi E, Sato T, Noda S, Jia D, Zhou Y, et al. Flame synthesized [NiO]0.25[Al2O3]0.75 and [NiO]0.50[Al2O3]0.50 nanopowders (NPs) provide thin, dense, flexible NiAl2O4‐Al2O3 and Ni‐Al2O3 nanocomposite catalytic films. Regeneration of a heterogeneous catalyst by oxidative re‐adsorption into a heterogeneous substrate is demonstrated for carbon nanotube syntheses. Submitted for publication.
dc.identifier.citedreferenceTaylor NJ, Pottebaum AJ, Uz V, Laine RM. The bottom up approach is not always the best processing method: dense α‐Al 2 O 3 /NiAl 2 O 4 composites. Adv Funct Mater. 2014; 24 ( 22 ): 3392 – 8.
dc.identifier.citedreferenceGullapelli S, Scurrell MS, Valluri DK. Photocatalytic H 2 production from glycerol–water mixtures over Ni/γ‐Al 2 O 3 and TiO 2 composite systems. Int J Hydrogen Energy. 2017; 42 ( 22 ): 15031 – 43.
dc.identifier.citedreferenceKamiguchi S, Nagashima S, Chihara T. Application of solid‐state early‐transition metal clusters as catalysts. Tetrahedron Lett. 2018; 59 ( 14 ): 1337 – 42.
dc.identifier.citedreferenceSuo H, Solan GA, Ma Y, Sun W. Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts. Coord Chem Rev. 2018; 372: 101 – 16.
dc.identifier.citedreferenceTakenaka S, Kaji R, Sugiyama K, Ida R. Preparation of composite catalysts composed of Pt nanoparticles and metal oxide nanosheets: preferential formation of Pt/metal oxide interfaces. Appl Catal, A. 2018; 566: 52 – 9.
dc.identifier.citedreferenceHita I, Deuss P, Bonura G, Frusteri F, Heeres H. Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal‐based catalysts. Fuel Process Technol. 2018; 179: 143 – 53.
dc.identifier.citedreferenceAlmutairi S, Kozhevnikova E, Kozhevnikov I. Ketonisation of acetic acid on metal oxides: Catalyst activity, stability and mechanistic insights. Appl Catal, A. 2018; 565: 135 – 45.
dc.identifier.citedreferenceSchmal M, Toniolo FS, Kozonoe CE. Perspective of catalysts for (Tri) reforming of natural gas and flue gas rich in CO 2. Appl Catal, A. 2018; 568: 23 – 42.
dc.identifier.citedreferenceHuang H, Lu H, Zhan Y, Liu G, Feng Q, Huang H, et al. VUV photo‐oxidation of gaseous benzene combined with ozone‐assisted catalytic oxidation: Effect on transition metal catalyst. Appl Surf Sci. 2017; 391: 662 – 7.
dc.identifier.citedreferenceMin JE, Lee YJ, Park HG, Zhang C, Jun KW. Carbon dioxide reforming of methane on Ni‐MgO‐Al 2 O 3 catalysts prepared by sol‐gel method: effects of Mg/Al ratios. J Ind Eng Chem. 2015; 26: 375 – 83.
dc.identifier.citedreferenceShin D, An X, Choun M, Lee J. Effect of transition metal induced pore structure on oxygen reduction reaction of electrospun fibrous carbon. Catal Today. 2016; 260: 82 – 8.
dc.identifier.citedreferenceSalam MA, Abdullah B. Catalysis mechanism of Pd‐promoted γ‐alumina in the thermal decomposition of methane to hydrogen: a density functional theory study. Mater Chem Phys. 2017; 188: 18 – 23.
dc.identifier.citedreferenceWang F, Xie Z, Liang J, Fang B, Piao Y, Hao M, et al. Tourmaline‐modified FeMnTiO x catalysts for improved low‐temperature NH 3 ‐SCR performance. Environ Sci Technol. 2019; 00: 1 – 8. https://doi.org/10.1021/acs.est.9b02620
dc.identifier.citedreferenceKeum C, Kim MC, Lee SY. Effects of transition metal ions on the catalytic activity of carbonic anhydrase mimics. J Mol Catal A: Chem. 2015; 408: 69 – 74.
dc.identifier.citedreferenceManukyan KV, Cross AJ, Yeghishyan AV, Rouvimov S, Miller JJ, Mukasyan AS, et al. Highly stable Ni–Al 2 O 3 catalyst prepared from a Ni–Al layered double hydroxide for ethanol decomposition toward hydrogen. Appl Catal, A. 2015; 508: 37 – 44.
dc.identifier.citedreferenceSalazar A, Chave T, Ayral A, Nikitenko SI, Hulea V, Kooyman PJ, et al. Engineering of silica‐supported platinum catalysts with hierarchical porosity combining latex synthesis, sonochemistry and sol‐gel process–I. Material preparation. Micropor Mesopor Mat. 2016; 234: 207 – 14.
dc.identifier.citedreferenceJiménez‐González C, Boukha Z, Rivas BD, González‐Velasco JR, Gutiérrez‐Ortiz JI, López‐Fonseca R. Behavior of coprecipitated NiAl 2 O 4 /Al 2 O 3 catalysts forlow‐temperature methane steam reforming. Energy Fuels. 2014; 28: 7109 – 21.
dc.identifier.citedreferenceBanerjee AM, Pai MR, Tewari R, Raje N, Tripathi AK, Bharadwaj SR, et al. A comprehensive study on Pt/Al 2 O 3 granular catalyst used for sulfuric acid decomposition step in sulfur–iodine thermochemical cycle: Changes in catalyst structure, morphology and metal‐support interaction. Appl Catal, B. 2015; 162: 327 – 37.
dc.identifier.citedreferenceZhou L, Li L, Wei N, Li J, Takanabe K, Basset JM. Effect of NiAl 2 O 4 formation on Ni/Al 2 O 3 stability during dry reforming of methane. ChemCatChem. 2015; 7 ( 16 ): 2406 – 2406.
dc.identifier.citedreferenceYuan P, Cui C, Han W, Bao X. The preparation of Mo/γ‐Al 2 O 3 catalysts with controllable size and morphology via adjusting the metal‐support interaction and their hydrodesulfurization performance. Appl Catal, A. 2016; 524: 115 – 25.
dc.identifier.citedreferenceTao M, Meng X, Lv Y, Bian Z, Xin Z. Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA‐15 for CO methanation reaction. Fuel. 2016; 165 ( 4 ): 289 – 97.
dc.identifier.citedreferenceWen X, Li R, Yang Y, Chen J, Zhang F. An egg‐shell type Ni/Al 2 O 3 catalyst derived from layered double hydroxides precursor for selective hydrogenation of pyrolysis gasoline. Appl Catal, A. 2013; 468: 204 – 15.
dc.identifier.citedreferenceLi B, Qian X, Wang X. Oxidative CO 2 reforming of methane over stable and active nickel‐based catalysts modified with organic agents. Int J Hydrogen Energy. 2015; 40 ( 25 ): 8081 – 92.
dc.identifier.citedreferenceDanilova MM, Fedorova ZA, Zaikovskii VI, Porsin AV, Kirillov VA, Krieger TA. Porous nickel‐based catalysts for combined steam and carbon dioxide reforming of methane. Appl Catal, B. 2014; 147 ( 7 ): 858 – 63.
dc.identifier.citedreferenceTakahashi S, Kan A, Ogawa H. Microwave dielectric properties and crystal structures of spinel‐structured MgAl 2 O 4 ceramics synthesized by a molten‐salt method. J Eur Ceram Soc. 2017; 37 ( 3 ): 1001 – 6.
dc.identifier.citedreferenceLi D, Lu M, Cai Y, Cao Y, Zhan Y, Jiang L. Synthesis of high surface area MgAl 2 O 4 spinel as catalyst support via layered double hydroxides‐containing precursor. Appl Clay Sci. 2016; 132: 243 – 50.
dc.identifier.citedreferenceGupta SK, Pathak N, Ghosh PS, Kadam RM. On the photophysics and speciation of actinide ion in MgAl 2 O 4 spinel using photoluminescence spectroscopy and first principle calculation: a case study with uranium. J Alloys Compd. 2017; 695: 337 – 43.
dc.identifier.citedreferenceSamkaria R, Sharma V. Effect of rare earth yttrium substitution on the structural, dielectric and electrical properties of nanosized nickel aluminate. Mater Sci Eng, B. 2013; 178 ( 20 ): 1410 – 5.
dc.identifier.citedreferenceSantillan‐Jimenez E, Loe R, Garrett M, Morgan T, Crocker M. Effect of Cu promotion on cracking and methanation during the Ni‐catalyzed deoxygenation of waste lipids and hemp seed oil to fuel‐like hydrocarbons. Catal Today. 2018; 302: 261 – 71.
dc.identifier.citedreferenceHe L, Hui H, Li S, Lin W. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores. Fuel. 2018; 216: 227 – 32.
dc.identifier.citedreferenceThattarathody R, Sheintuch M. Kinetics and dynamics of methanol steam reforming on CuO/ZnO/alumina catalyst. Appl Catal, A. 2017; 540: 47 – 56.
dc.identifier.citedreferenceBagherzadeh SB, Haghighi M. Plasma‐enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al 2 O 3 nanocatalyst used in hydrogen production via methanol steam reforming. Energy Convers Manage. 2017; 142: 452 – 65.
dc.identifier.citedreferenceCorrea A, Cascella M, Scotti N, Zaccheria F, Ravasio N, Psaro R. Mechanistic insights into formic acid dehydrogenation promoted by Cu‐amino based systems. Inorg Chim Acta. 2018; 470: 290 – 4.
dc.identifier.citedreferenceKalenchuk AN, Bogdan VI, Dunaev SF, Kustov LM, Dunaev SF, Kustov LM. Dehydrogenation of polycyclic naphthenes on a Pt/C catalyst for hydrogen storage in liquid organic hydrogen carriers. Fuel Process Technol. 2018; 169: 94 – 100.
dc.identifier.citedreferenceKaraman BP, Cakiryilmaz N, Arbag H, Oktar N, Dogu G, Dogu T. Performance comparison of mesoporous alumina supported Cu & Ni based catalysts in acetic acid reforming. Int J Hydrogen Energy. 2017; 42 ( 42 ): 26257 – 69.
dc.identifier.citedreferencePapageridis KN, Siakavelas G, Charisiou ND, Avraam DG, Tzounis L, Kousi K, et al. Comparative study of Ni Co, Cu supported on γ‐alumina catalysts for hydrogen production via the glycerol steam reforming reaction. Fuel Process Technol. 2016; 152: 156 – 75.
dc.identifier.citedreferenceKim D, Jeon J, Lee W, Lee J, Ha KS. Effective suppression of deactivation by utilizing Ni‐doped ordered mesoporous alumina‐supported catalysts for the production of hydrogen and CO gas mixture from methane. Int J Hydrogen Energy. 2017; 42 ( 39 ): 24744 – 56.
dc.identifier.citedreferenceBraidy N, Bastien S, Blanchard J, Fauteux‐Lefebvre C, Achouri IE, Abatzoglou N. Activation mechanism and microstructural evolution of a YSZ/Ni‐alumina catalyst for dry reforming of methane. Catal Today. 2017; 291: 99 – 105.
dc.identifier.citedreferenceJiménez‐González C, Boukha Z, Rivas BD, González‐Velasco JR, Gutiérrez‐Ortiz JI, López‐Fonseca R. Behaviour of nickel–alumina spinel (NiAl 2 O 4 ) catalysts for isooctane steam reforming. Int J Hydrogen Energy. 2015; 40 ( 15 ): 5281 – 8.
dc.identifier.citedreferenceShamskar FR, Meshkani F, Rezaei M. Ultrasound assisted co‐precipitation synthesis and catalytic performance of mesoporous nanocrystalline NiO‐Al 2 O 3 powders. Ultrason Sonochem. 2017; 34: 436 – 47.
dc.identifier.citedreferenceKumar JP, Prasad GK, Allen JA, Ramacharyulu P, Kadirvelu K, Singh B. Synthesis of mesoporous metal aluminate nanoparticles and studies on the decontamination of sulfur mustard. J Alloys Compd. 2016; 662: 44 – 53.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.