Show simple item record

Large Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover

dc.contributor.authorLemmon, M. T.
dc.contributor.authorGuzewich, S. D.
dc.contributor.authorMcConnochie, T.
dc.contributor.authorVicente‐retortillo, A.
dc.contributor.authorMartínez, G.
dc.contributor.authorSmith, Michael D.
dc.contributor.authorBell, J. F.
dc.contributor.authorWellington, D.
dc.contributor.authorJacob, S.
dc.date.accessioned2019-10-30T15:30:25Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2019-10-30T15:30:25Z
dc.date.issued2019-08-28
dc.identifier.citationLemmon, M. T.; Guzewich, S. D.; McConnochie, T.; Vicente‐retortillo, A. ; Martínez, G. ; Smith, Michael D.; Bell, J. F.; Wellington, D.; Jacob, S. (2019). "Large Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover." Geophysical Research Letters 46(16): 9448-9456.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/151856
dc.description.abstractMars’ atmosphere typically supports dust aerosol with an effective radius near 1.5 μm, varying from ~1 μm during low dust times near northern summer solstice to ~2 μm during higher dust times in southern spring and summer. After global dust events, size variations outside this range have not previously been observed. We report on imaging and spectral observations by the Curiosity rover through the 2018 global dust event. These observations show that the dust effective radius was seasonally normal prior to the local onset of increased opacity, increased rapidly above 4 μm with increasing opacity, remained above 3 μm over a period of ~50 Martian solar days, then returned to seasonal values before the opacity did so. This demonstrates lifting and regionalâ scale transport of a dust population ~3 times the size of typical dust aerosol.Plain Language SummaryDuring the global dust storm of 2018, the Curiosity rover measured the variation of atmospheric dust over time. During the onset of the dust storm, typical Martian dust was enhanced by much larger particles that were freshly lifted off the surface in distant storms and then carried to the rover site at Gale crater. The larger dust particles persisted for weeks, but fell out of the atmosphere faster than the typical dust as normal conditions were restored.Key PointsThe Curiosity rover observed dust aerosol size variations through the 2018 global dust eventThe average dust radius increased above 4 μm, more than double the largest sizes previously seen with Curiosity’s instrumentsThe observations demonstrate the lifting and regionalâ scale transport of dust significantly larger than typical dust aerosol
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMars
dc.subject.otheraerosol
dc.subject.otheratmosphere
dc.subject.otherdust
dc.titleLarge Dust Aerosol Sizes Seen During the 2018 Martian Global Dust Event by the Curiosity Rover
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151856/1/grl59493.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/151856/2/grl59493_am.pdf
dc.identifier.doi10.1029/2019GL084407
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSmith, P. H., & Lemmon, M. T. ( 1999 ). Opacity of the Mars atmosphere measured by the Imager for Mars Pathfinder. Journal of Geophysical Research, 104 ( E4 ), 8975 â 8985. https://doi.org/10.1029/1998JE900017
dc.identifier.citedreferenceGierasch, P. J., & Goody, R. M. ( 1972 ). The effect of dust on the temperature of the Martian atmosphere. Journal of Atmospheric Science, 29 ( 2 ), 400 â 402. https://doi.org/10.1175/1520â 0469(1972)029<0400:TEODOT>2.0.CO;2
dc.identifier.citedreferenceGuzewich, S. D., Lemmon, M., Smith, C. L., Martinez, G., Vicenteâ Retortillo, A., Newman, C. E., Baker, M., Campbell, C., Cooper, B., Gomezâ Elvira, J., Harri, A.â M., Hassler, D., Martinâ Torres, F. J., McConnochie, T., Moores, J. E., Kahanpaa, H., Khayat, A., Richardson, M. I., Smith, M. D., Sullivan, R., de la Torre Juarez, M., Vasavada, A. R., Viudezâ Moreiras, D., Zeitlin, C., & Zorzano Mier, M. P. ( 2019 ). Mars Science Laboratory observations of the 2018/Mars year 34 global dust storm. Geophysical Research Letters, 46, 71 â 79. https://doi.org/10.1029/2018GL080839
dc.identifier.citedreferenceGuzewich, S. D., Smith, M. D., & Wolff, M. J. ( 2014 ). The vertical distribution of Martian aerosol particle size. Journal of Geophysical Research: Planets, 119, 2694 â 2708. https://doi.org/10.1002/2014JE004704
dc.identifier.citedreferenceKahre, M. A., Hollingsworth, J. L., Haberle, R. M., & Murphy, J. R. ( 2008 ). Investigations of the variability of dust particle sizes in the Martian atmosphere using the NASA Ames General Circulation Model. Icarus, 195 ( 2 ), 576 â 597. https://doi.org/10.1016/j.icarus.2008.01.023
dc.identifier.citedreferenceLemmon, M. T., Wolff, M. J., Bell, J. F. III, Smith, M. D., Cantor, B., & Smith, P. H. ( 2015 ). Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, 251, 96 â 111. https://doi.org/10.1016/j.icarus.2014.03.029
dc.identifier.citedreferenceLemmon, M. T., Wolff, M. J., Smith, M. D., Clancy, R. T., Banfield, D., Landis, G. A., Ghosh, A., Smith, P. H., Spanovich, N., Whitney, B., Whelley, P., Greeley, R., Thompson, S., Bell, J. F. III, & Squyres, S. W. ( 2004 ). Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science, 306 ( 5702 ), 1753 â 1756. https://doi.org/10.1126/science.1104474
dc.identifier.citedreferenceMäättänen, A., Listowski, C., Montmessin, F., Maltagliati, L., Reberac, A., Joly, L., & Bertaux, J.â L. ( 2013 ). A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus, 223 ( 2 ), 892 â 941. https://doi.org/10.1016/j.icarus.2012.12.001
dc.identifier.citedreferenceMalin, M. C., Ravine, M. A., Caplinger, M. A., Ghaemi, F. T., Schaffner, J. A., Maki, J. N., Bell, J. F. III, Cameron, J. F., Dietrich, W. E., Edgett, K. S., Edwards, L. J., Garvin, J. B., Hallet, B., Herkenhoff, K. E., Heydari, E., Kah, L. C., Lemmon, M. T., Minitti, M. E., Olson, T. S., Parker, T. J., Rowland, S. K., Schieber, J., Sletten, R., Sullivan, R. J., Sumner, D. Y., Yingst, R. A., Duston, B. M., McNair, S., & Jensen, E. H. ( 2017 ). The Mars Science Laboratory (MSL) Mast cameras and Descent imager: I. Investigation and instrument descriptions. Earth and Space Science, 4, 506 â 539. https://doi.org/10.1002/2016EA000252
dc.identifier.citedreferenceMcConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M. T., Wiens, R. C., Maurice, S., Gasnault, O., LaSue, J., Meslin, P.â Y., Harri, A.â M., Genzer, M., Kemppinen, O., Martínez, G. M., DeFlores, L., Blaney, D., Johnson, J. R., & Bell, J. F. III ( 2018 ). Retrieval of water vapor column abundance from ChemCam passive sky spectroscopy. Icarus, 307, 294 â 326. https://doi.org/10.1016/j.icarus.2017.10.043
dc.identifier.citedreferenceOckertâ Bell, M. E., Bell, J. F., Pollack, J. B., McKay, C. P., & Forget, F. ( 1997 ). Absorption and scattering properties of the Martian dust in the solar wavelengths. Journal of Geophysical Research, 102 ( E4 ), 9039 â 9050. https://doi.org/10.1029/96JE03991
dc.identifier.citedreferencePang, K., Ajello, J. M., Hord, C. W., & Egan, W. G. ( 1976 ). Complex Refractive Index of Martian Dust: Mariner 9 Ultraviolet Observations. Icarus, 27 ( 1 ), 55 â 67. https://doi.org/10.1016/0019â 1035(76)90184â 6
dc.identifier.citedreferencePollack, J. B., Colburn, D. S., Flasar, F. M., Kahn, R., Carlston, C. E., & Pidek, D. G. ( 1979 ). Properties and effects of dust particles suspended in the Martian atmosphere. Journal of Geophysical Research, 84 ( B6 ), 2929 â 2945. https://doi.org/10.1029/JB084iB06p02929
dc.identifier.citedreferencePollack, J. B., Ockertâ Bell, M. E., & Shepard, M. K. ( 1995 ). Viking Lander image analysis of Martian atmospheric dust. Journal of Geophysical Research, 100 ( E3 ), 5235 â 5250. https://doi.org/10.1029/94JE02640
dc.identifier.citedreferenceRannou, P., Perrier, S., Bertaux, J.â L., Montmessin, F., Korablev, O., & Reberac, A. ( 2006 ). Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM. Journal of Geophysical Research, 111, E09S10. https://doi.org/10.1029/2006JE002693
dc.identifier.citedreferenceSmith, C. L., Moores, J. E., Lemmon, M., Guzewich, S. D., Moore, C. A., Ellison, D., & Khayat, A. S. J. ( 2019 ). Visibility and lineâ ofâ sight extinction estimates in Gale crater during the 2018/MY34 global dust storm. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083788
dc.identifier.citedreferenceSmith, M. D. ( 2008 ). Spacecraft observations of the Martian atmosphere. Annual Review of Earth and Planetary Sciences, 36 ( 1 ), 191 â 219. https://doi.org/10.1146/annurev.earth.36.031207.124334
dc.identifier.citedreferenceSmith, M. D., & Wolff, M. J. ( 2014 ). Dust aerosol particle size and shape using MER Navcam and Pancam sky imaging, presented at the 5th International Workshop on the Mars Atmosphere: Modelling and Observations, Oxford, UK, January, 2014.
dc.identifier.citedreferenceStamnes, K., Tsay, S.â C., Wiscombe, W., & Jayaweera, K. ( 1988 ). Numerically stable algorithm for discreteâ ordinateâ method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27 ( 12 ), 2502 â 2509. https://doi.org/10.1364/AO.27.002502
dc.identifier.citedreferenceTomasko, M. G., Doose, L. R., Lemmon, M. T., Smith, P. H., & Wegryn, E. ( 1999 ). Properties of dust in the Martian atmosphere from the Imager for Mars Pathfinder. Journal of Geophysical Research, 104 ( E4 ), 8987 â 9007. https://doi.org/10.1029/1998JE900016
dc.identifier.citedreferenceToon, O. B., Pollack, J. B., & Sagan, C. ( 1977 ). Physical properties of the particles composing the Martian dust storm of 1971â 1972. Icarus, 30 ( 4 ), 663 â 696. https://doi.org/10.1016/0019â 1035(77)90088â 4
dc.identifier.citedreferenceVicenteâ Retortillo, à ., Martínez, G., Rennó, N., Lemmon, M. T., & de la Torre Juarez, M. ( 2017 ). Determination of dust aerosol particle size at Gale crater using REMS UVS and Mastcam measurements. Geophysical Research Letters, 44, 3502 â 3508. https://doi.org/10.1002/2017GL072589
dc.identifier.citedreferenceVincendon, M., Langevin, Y., Poulet, F., Pommerol, A., Wolff, M., Bibring, J.â P., Gondet, B., & Jouglet, D. ( 2009 ). Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits. Icarus, 200 ( 2 ), 395 â 405. https://doi.org/10.1016/j.icarus.2008.12.012
dc.identifier.citedreferenceWilson, R. J., Neumann, G. A., & Smith, M. D. ( 2007 ). Diurnal variation and radiative influence of Martian water ice clouds. Geophysical Research Letters, 34, LO2710. https://doi.org/10.1029/2006GL027976
dc.identifier.citedreferenceWolff, M. J., & Clancy, R. T. ( 2003 ). Constraints on the size of Martian aerosols from thermal emission spectrometer observations. Journal of Geophysical Research, 108 ( E9 ), 5097. https://doi.org/10.1029/2003JE002057
dc.identifier.citedreferenceWolff, M. J., Smith, M. D., Clancy, R. T., Arvidson, R., Kahre, M., Seelos, F., Murchie, S., & Savijarvi, H. ( 2009 ). Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. Journal of Geophysical Research, 114, E00D04. https://doi.org/10.1029/2009JE003350
dc.identifier.citedreferenceWolff, M. J., Smith, M. D., Clancy, R. T., Spanovich, N., Whitney, B. A., Lemmon, M. T., Bandfield, J., Banfield, D., Ghosh, A., Landis, G., Christensen, P., Bell, J. F. III, & Squyres, S. ( 2006 ). Atmospheric results from Mars Global Surveyor overflights of the Mars Exploration Rovers. Journal of Geophysical Research, 111, E12S17. https://doi.org/10.1029/2006JE002786
dc.identifier.citedreferenceBell, J. F., Godber, A., McNair, S., Caplinger, M. A., Maki, J. N., Lemmon, M. T., Van Beek, J., Malin, M. C., Wellington, D., Kinch, K. M., Madsen, M. B., Hardgrove, C., Ravine, M. A., Jensen, E., Harker, D., Anderson, R. B., Herkenhoff, K. E., Morris, R. V., & Cisneros, E. ( 2017 ). The Mars Science Laboratory Curiosity Rover Mast Camera (Mastcam) instruments: Preâ flight and inâ flight calibration, validation, and data archiving. Earth and Space Science, 4, 396 â 452. https://doi.org/10.1002/2016EA000219
dc.identifier.citedreferenceChenâ Chen, H., Pérezâ Hoyos, S., & Sánchezâ Lavega, A. ( 2019 ). Dust particle size and optical depth on Mars Retrieved by the MSL navigation cameras. Icarus, 319, 43 â 57. https://doi.org/10.1016/j.icarus.2018.09.010
dc.identifier.citedreferenceClancy, R. T., & Lee, S. W. ( 1991 ). A new look at dust and clouds in the Mars atmosphere: Analysis of emissionâ phaseâ function sequences from global Viking IRTM observations. Icarus, 93 ( 1 ), 135 â 158. https://doi.org/10.1016/0019â 1035(91)90169â T
dc.identifier.citedreferenceClancy, R. T., Sandor, B. J., Wolff, M. J., Christensen, P. R., Smith, M. D., Pearl, J. C., Conrath, B. J., & Wilson, R. J. ( 2000 ). An intercomparison of groundâ based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. Journal of Geophysical Research, 105 ( E4 ), 9553 â 9571. https://doi.org/10.1029/1999JE001089
dc.identifier.citedreferenceClancy, R. T., Wolff, M. J., & Christensen, P. R. ( 2003 ). Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 108 ( E9 ), 5098. https://doi.org/10.1029/2003JE002058
dc.identifier.citedreferenceClancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., Smith, M. D., & McConnochie, T. H. ( 2010 ). Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus, 207 ( 1 ), 98 â 109. https://doi.org/10.1016/j.icarus.2009.10.011
dc.identifier.citedreferenceDeirmendjian, D. ( 1964 ). Scattering and polarization properties of water clouds and hazes in the visible and infrared. Applied Optics, 3 ( 2 ), 187. https://doi.org/10.1364/AO.3.000187
dc.identifier.citedreferenceDlugach, Z. M., Korablev, O. I., Morozhenko, A. V., Moroz, V. I., Petrova, E. V., & Rodin, A. V. ( 2003 ). Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution. Solar System Research, 37 ( 1 ), 1 â 19. https://doi.org/10.1023/A:1022395404115
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.