Show simple item record

Spectrum of KV2.1 Dysfunction in KCNB1‐Associated Neurodevelopmental Disorders

dc.contributor.authorKang, Seok Kyu
dc.contributor.authorVanoye, Carlos G.
dc.contributor.authorMisra, Sunita N.
dc.contributor.authorEchevarria, Dennis M.
dc.contributor.authorCalhoun, Jeffrey D.
dc.contributor.authorO’Connor, John B.
dc.contributor.authorFabre, Katarina L.
dc.contributor.authorMcKnight, Dianalee
dc.contributor.authorDemmer, Laurie
dc.contributor.authorGoldenberg, Paula
dc.contributor.authorGrote, Lauren E.
dc.contributor.authorThiffault, Isabelle
dc.contributor.authorSaunders, Carol
dc.contributor.authorStrauss, Kevin A.
dc.contributor.authorTorkamani, Ali
dc.contributor.authorder Smagt, Jasper
dc.contributor.authorGassen, Koen
dc.contributor.authorCarson, Robert P.
dc.contributor.authorDiaz, Jullianne
dc.contributor.authorLeon, Eyby
dc.contributor.authorJacher, Joseph E.
dc.contributor.authorHannibal, Mark C.
dc.contributor.authorLitwin, Jessica
dc.contributor.authorFriedman, Neil R.
dc.contributor.authorSchreiber, Allison
dc.contributor.authorLynch, Bryan
dc.contributor.authorPoduri, Annapurna
dc.contributor.authorMarsh, Eric D.
dc.contributor.authorGoldberg, Ethan M.
dc.contributor.authorMillichap, John J.
dc.contributor.authorGeorge, Alfred L.
dc.contributor.authorKearney, Jennifer A.
dc.date.accessioned2020-01-13T15:02:36Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:02:36Z
dc.date.issued2019-12
dc.identifier.citationKang, Seok Kyu; Vanoye, Carlos G.; Misra, Sunita N.; Echevarria, Dennis M.; Calhoun, Jeffrey D.; O’Connor, John B.; Fabre, Katarina L.; McKnight, Dianalee; Demmer, Laurie; Goldenberg, Paula; Grote, Lauren E.; Thiffault, Isabelle; Saunders, Carol; Strauss, Kevin A.; Torkamani, Ali; der Smagt, Jasper; Gassen, Koen; Carson, Robert P.; Diaz, Jullianne; Leon, Eyby; Jacher, Joseph E.; Hannibal, Mark C.; Litwin, Jessica; Friedman, Neil R.; Schreiber, Allison; Lynch, Bryan; Poduri, Annapurna; Marsh, Eric D.; Goldberg, Ethan M.; Millichap, John J.; George, Alfred L.; Kearney, Jennifer A. (2019). "Spectrum of KV2.1 Dysfunction in KCNB1‐Associated Neurodevelopmental Disorders." Annals of Neurology 86(6): 899-912.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/152486
dc.publisherJohn Wiley & Sons, Inc.
dc.titleSpectrum of KV2.1 Dysfunction in KCNB1‐Associated Neurodevelopmental Disorders
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152486/1/ana25607.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152486/2/ana25607_am.pdf
dc.identifier.doi10.1002/ana.25607
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceTaglialatela M, Drewe JA, Brown AM. Barium blockade of a clonal potassium channel and its regulation by a critical pore residue. Mol Pharmacol 1993; 44: 180 – 190.
dc.identifier.citedreferenceAllen AS, Berkovic SF, Cossette P, et al. De novo mutations in epileptic encephalopathies. Nature 2013; 501: 217 – 221.
dc.identifier.citedreferenceCarvill GL, Mefford HC. Next‐generation sequencing in intellectual disability. J Pediatr Genet 2015; 4: 128 – 135.
dc.identifier.citedreferenceRichards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405 – 424.
dc.identifier.citedreferenceMurakoshi H, Trimmer JS. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci 1999; 19: 1728 – 1735.
dc.identifier.citedreferenceBishop HI, Guan D, Bocksteins E, et al. Distinct cell‐ and layer‐specific expression patterns and independent regulation of Kv2 channel subtypes in cortical pyramidal neurons. J Neurosci 2015; 35: 14922 – 14942.
dc.identifier.citedreferenceSpeca DJ, Ogata G, Mandikian D, et al. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav 2014; 13: 394 – 408.
dc.identifier.citedreferenceTorkamani A, Bersell K, Jorge BS, et al. De novo KCNB1 mutations in epileptic encephalopathy. Ann Neurol 2014; 76: 529 – 540.
dc.identifier.citedreferenceSaitsu H, Akita T, Tohyama J, et al. De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing. Sci Rep 2015; 5: 15199.
dc.identifier.citedreferenceThiffault I, Speca DJ, Austin DC, et al. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. J Gen Physiol 2015; 146: 399 – 410.
dc.identifier.citedreferenceLatypova X, Matsumoto N, Vinceslas‐Muller C, et al. Novel KCNB1 mutation associated with non‐syndromic intellectual disability. J Hum Genet 2017; 62: 569 – 573.
dc.identifier.citedreferencede Kovel CGF, Syrbe S, Brilstra EH, et al. Neurodevelopmental disorders caused by de novo variants in KCNB1 genotypes and phenotypes. JAMA Neurol 2017; 74: 1228 – 1236.
dc.identifier.citedreferenceAllen NM, Conroy J, Shahwan A, et al. Unexplained early onset epileptic encephalopathy: exome screening and phenotype expansion. Epilepsia 2016; 57: e12 – e17.
dc.identifier.citedreferenceMiao P, Peng J, Chen C, et al. A novel mutation in KCNB1 gene in a child with neuropsychiatric comorbidities with both intellectual disability and epilepsy and review of literature [in Chinese]. Zhonghua Er Ke Za Zhi 2017; 55: 115 – 119.
dc.identifier.citedreferenceCalhoun JD, Vanoye CG, Kok F, et al. Characterization of a KCNB1 variant associated with autism, intellectual disability, and epilepsy. Neurol Genet 2017; 3: e198.
dc.identifier.citedreferenceFitzgerald TW, Gerety SS, Jones WD, et al. Large‐scale discovery of novel genetic causes of developmental disorders. Nature 2015; 519: 223 – 228.
dc.identifier.citedreferenceMarini C, Romoli M, Parrini E, et al. Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations. Neurol Genet 2017; 3: e206.
dc.identifier.citedreferenceLandrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018; 46: D1062 – D1067.
dc.identifier.citedreferenceLek M, Karczewski KJ, Minikel EV, et al. Analysis of protein‐coding genetic variation in 60,706 humans. Nature 2016; 536: 285 – 291.
dc.identifier.citedreferenceSwaminathan GJ, Bragin E, Chatzimichali EA, et al. DECIPHER: Web‐based, community resource for clinical interpretation of rare variants in developmental disorders. Hum Mol Genet 2012; 21: R37 – R44.
dc.identifier.citedreferenceMetsalu T, Vilo J. ClustVis: a Web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 2015; 43: W566 – W570.
dc.identifier.citedreferenceLong SB, Tao X, Campbell EB, MacKinnon R. Atomic structure of a voltage‐dependent K+ channel in a lipid membrane‐like environment. Nature 2007; 450: 376 – 382.
dc.identifier.citedreferenceLong SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 2005; 309: 903 – 908.
dc.identifier.citedreferenceKircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310 – 315.
dc.identifier.citedreferenceVanoye CG, Desai RR, Fabre KL, et al. High‐throughput functional evaluation of KCNQ1 decrypts variants of unknown significance. Circ Genom Precis Med 2018; 11: e002345.
dc.identifier.citedreferenceHuang H, Kuenze G, Smith JA, et al. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Sci Adv 2018; 4: eaar2631.
dc.identifier.citedreferenceKarczewski KJ, Francioli LC, Tiao G, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss‐of‐function intolerance across human protein‐coding genes. bioRxiv 2019: 531210.
dc.identifier.citedreferenceCerda O, Baek JH, Trimmer JS. Mining recent brain proteomic databases for ion channel phosphosite nuggets. J Gen Physiol 2011; 137: 3 – 16.
dc.identifier.citedreferenceFox PD, Loftus RJ, Tamkun MM. Regulation of Kv2.1 K(+) conductance by cell surface channel density. J Neurosci 2013; 33: 1259 – 1270.
dc.identifier.citedreferenceDeutsch E, Weigel AV, Akin EJ, et al. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell 2012; 23: 2917 – 2929.
dc.identifier.citedreferenceFull Y, Seebohm G, Lerche H, Maljevic S. A conserved threonine in the S1‐S2 loop of KV7.2 and K V7.3 channels regulates voltage‐dependent activation. Pflugers Archiv 2013; 465: 797 – 804.
dc.identifier.citedreferenceLee SY, Banerjee A, MacKinnon R. Two separate interfaces between the voltage sensor and pore are required for the function of voltage‐dependent K(+) channels. PLoS Biol 2009; 7: e47.
dc.identifier.citedreferenceBetts MJ Russell RB. Amino acid properties and consequences of substitutions. In: Gray IC, Barnes MR, eds. Bioinformatics for geneticists. Hoboken, NJ: John Wiley & Sons, 2003: 289 – 316.
dc.identifier.citedreferenceBrown AM, Drewe JA, Hartmann HA, et al. The potassium pore and its regulation. Ann N Y Acad Sci 1993; 707: 74 – 80.
dc.identifier.citedreferenceHeginbotham L, Lu Z, Abramson T, MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J 1994; 66: 1061 – 1067.
dc.identifier.citedreferencePeltola MA, Kuja‐Panula J, Lauri SE, et al. AMIGO is an auxiliary subunit of the Kv2. 1 potassium channel. EMBO Rep 2011; 12: 1293 – 1299.
dc.identifier.citedreferenceKuryshev YA, Gudz TI, Brown AM, Wible BA. KChAP as a chaperone for specific K(+) channels. Am J Physiol Cell Physiol 2000; 278: C931 – C941.
dc.identifier.citedreferenceMcCrossan ZA, Roepke TK, Lewis A, et al. Regulation of the Kv2.1 potassium channel by MinK and MiRP1. J Membr Biol 2009; 228: 1 – 14.
dc.identifier.citedreferenceSievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7: 539.
dc.identifier.citedreferenceOmasits U, Ahrens CH, Muller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014; 30: 884 – 886.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.