Show simple item record

Impact of pharmacologic inhibition of tooth movement on periodontal and tooth root tissues during orthodontic force application

dc.contributor.authorBaxter, Sarah J.
dc.contributor.authorSydorak, Inna
dc.contributor.authorMa, Peter X.
dc.contributor.authorHatch, Nan E.
dc.date.accessioned2020-02-05T15:06:55Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-02-05T15:06:55Z
dc.date.issued2020-02
dc.identifier.citationBaxter, Sarah J.; Sydorak, Inna; Ma, Peter X.; Hatch, Nan E. (2020). "Impact of pharmacologic inhibition of tooth movement on periodontal and tooth root tissues during orthodontic force application." Orthodontics & Craniofacial Research 23(1): 35-43.
dc.identifier.issn1601-6335
dc.identifier.issn1601-6343
dc.identifier.urihttps://hdl.handle.net/2027.42/153668
dc.description.abstractObjectiveThe goal of this study was to investigate potential negative sequelae of orthodontic force application ±delivery of an osteoclast inhibitor, recombinant osteoprotegerin protein (OPG‐Fc), on periodontal tissues.Setting and Sample PopulationSprague Dawley rats from a commercial supplier were investigated in a laboratory setting.Materials and MethodsRats were randomly divided into four groups (n = 7 each): one group with no orthodontic appliances and injected once prior to the experimental period with empty polymer microspheres, one group with orthodontic appliances and injected once with empty microspheres, one group with orthodontic appliances and injected once with polymer microspheres containing 1 mg/kg of OPG‐Fc, and one group with orthodontic appliances and injected with non‐encapsulated 5 mg/kg of OPG‐Fc every 3 days during the experimental period. The animals were euthanized after 28 days of tooth movement for histomorphometric analyses.ResultsRoot resorption, PDL area and widths were similar in animals without appliances and animals with appliances plus high‐dose OPG‐Fc. PDL blood vessels were compressed and decreased in number in all animals that received orthodontic appliances, regardless of OPG‐Fc. Hyalinization was significantly increased only in animals with orthodontic appliances plus multiple injections of 5 mg/kg non‐encapsulated OPG‐Fc when compared to animals without appliances.ConclusionsResults of this study indicate that while pharmacological modulation of tooth movement through osteoclast inhibition is feasible when delivered in a locally controlled low‐dose manner, high‐dose levels that completely prevent tooth movement through bone may decrease local blood flow and increase the incidence of hyalinization.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertooth movement
dc.subject.otherroot resorption
dc.subject.otherperiodontal ligament
dc.subject.othervascularization
dc.titleImpact of pharmacologic inhibition of tooth movement on periodontal and tooth root tissues during orthodontic force application
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153668/1/ocr12350_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153668/2/ocr12350-sup-0001-FigS1-S2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153668/3/ocr12350.pdf
dc.identifier.doi10.1111/ocr.12350
dc.identifier.sourceOrthodontics & Craniofacial Research
dc.identifier.citedreferenceIchinose Y, Tanaka H, Inoue M, Mochizuki S, Tsuda E, Seino Y. Osteoclastogenesis inhibitory factor/osteoprotegerin reduced bone loss induced by mechanical unloading. Calcif Tissue Int. 2004; 75: 338 ‐ 343.
dc.identifier.citedreferenceKanzaki H, Chiba M, Arai K, et al. Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther. 2006; 13: 678 ‐ 685.
dc.identifier.citedreferenceKanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H. Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res. 2004; 83 ( 12 ): 920 ‐ 925.
dc.identifier.citedreferenceDunn MD, Park CH, Kostenuik PJ, Kapila S, Giannobile WV. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone. 2007; 41: 446 ‐ 455.
dc.identifier.citedreferenceSydorak I, Dang M, Baxter SJ, et al. Microsphere controlled drug delivery for local control of tooth movement. Eur J Orthod. 2019; 41: 1 ‐ 8.
dc.identifier.citedreferenceGonzales C, Hotokezaka H, Yoshimatsu M, Yozgatian JH, Darendeliler MA, Yoshida N. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod. 2008; 78: 502 ‐ 509.
dc.identifier.citedreferenceCuoghi OA, Aiello CA, Consolaro A, Tondelli PM, Mendonca MR. Resorption of roots of different dimension induced by different types of forces. Braz Oral Res. 2014; 28: 1 ‐ 7.
dc.identifier.citedreferenceTakahashi I, Nishimura M, Onodera K, et al. Expression of MMP‐8 and MMP‐13 genes in the periodontal ligament during tooth movement in rats. J Dent Res. 2003; 82: 646 ‐ 651.
dc.identifier.citedreferenceAlberto Consolaro L, Kinoshita A, Francischone LA, Santamaria M, Fracalossi A, Maldonado VB. Indirect bone resorption in orthodontic movement: when does periodontal reorganization begin and how does it occur? Dental Press J Orthod. 2011; 16: 25 ‐ 31.
dc.identifier.citedreferenceRygh P. Ultrastructural changes in pressure zones of human periodontium incident to orthodontic tooth movement. Acta Odontol Scand. 1973; 31: 109 ‐ 122.
dc.identifier.citedreferenceRygh P. Ultrastructural changes of the periodontal fibers and their attachment in rat molar periodontium incident to orthodontic tooth movement. Scand J Dent Res. 1973; 81: 467 ‐ 480.
dc.identifier.citedreferenceBekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001; 16: 348 ‐ 360.
dc.identifier.citedreferenceCapparelli C, Morony S, Warmington K, et al. Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res. 2003; 18: 852 ‐ 858.
dc.identifier.citedreferenceKing GJ, Latta L, Rutenberg J, Ossi A, Keeling SD. Alveolar bone turnover in male rats: site‐ and age‐specific changes. Anat Rec. 1995; 242: 321 ‐ 328.
dc.identifier.citedreferenceKawamoto S, Ejiri S, Hoshi K, Nagaoka E, Ozawa H. Immunolocalization of osteoclast differentiation factor in rat periodontium. Arch Oral Biol. 2002; 47: 55 ‐ 58.
dc.identifier.citedreferenceKimura R, Anan H, Matsumoto A, Noda D, Maeda K. Dental root resorption and repair: histology and histometry during physiological drift of rat molars. J Periodontal Res. 2003; 38: 525 ‐ 532.
dc.identifier.citedreferenceIbrahim AY, Gudhimella S, Pandruvada SN, Huja SS. Resolving differences between animal models for expedited orthodontic tooth movement. Orthod Craniofac Res. 2017; 20 ( Suppl 1 ): 72 ‐ 76.
dc.identifier.citedreferenceRen Y, Maltha JC, Kuijpers‐Jagtman AM. The rat as a model for orthodontic tooth movement–a critical review and a proposed solution. Eur J Orthod. 2004; 26: 483 ‐ 490.
dc.identifier.citedreferenceReitan K. Effects of force magnitude and direction of tooth movement on different alveolar bone types. Angle Orthod. 1964; 34: 244 ‐ 255.
dc.identifier.citedreferenceConsolaro A, Mitie A, Kinoshita O, et al. Indirect bone resorption in orthodontic movement: when does periodontal reorganization begin and how does it occur? Dental Press J Orthod. 2011; 16: 25 ‐ 31.
dc.identifier.citedreferenceTaddei SR, Moura AP, Andrade I Jr, et al. Experimental model of tooth movement in mice: a standardized protocol for studying bone remodeling under compression and tensile strains. J Biomech. 2012; 45: 2729 ‐ 2735.
dc.identifier.citedreferenceShu R, Bai D, Sheu T, et al. Sclerostin promotes bone remodeling in the process of tooth movement. PLoS ONE. 2017; 12: e0167312.
dc.identifier.citedreferenceStuteville O. Summary review of tissue changes incident to tooth movement. Angle Orthod. 1938; 8: 1 ‐ 20.
dc.identifier.citedreferenceReitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 1967; 53: 721 ‐ 745.
dc.identifier.citedreferenceKing GJ, Keeling SD, Wronski TJ. Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone. 1991; 12: 401 ‐ 409.
dc.identifier.citedreferenceStorey E. The nature of tooth movement. Am J Orthod. 1973; 63: 292 ‐ 314.
dc.identifier.citedreferenceBrooks PJ, Nilforoushan D, Manolson MF, Simmons CA, Gong SG. Molecular markers of early orthodontic tooth movement. Angle Orthod. 2009; 79: 1108 ‐ 1113.
dc.identifier.citedreferenceBaker RW, Guay AH, Peterson HW Jr. Current concepts of anchorage management. Angle Orthod. 1972; 42: 129 ‐ 138.
dc.identifier.citedreferenceHigley LB. Anchorage in orthodontics. Am J Orthod. 1969; 55: 791 ‐ 794.
dc.identifier.citedreferenceClemmer EJ, Hayes EW. Patient cooperation in wearing orthodontic headgear. Am J Orthod. 1979; 75: 517 ‐ 524.
dc.identifier.citedreferenceDiar‐Bakirly S, Feres MF, Saltaji H, Flores‐Mir C, El‐Bialy T. Effectiveness of the transpalatal arch in controlling orthodontic anchorage in maxillary premolar extraction cases: a systematic review and meta‐analysis. Angle Orthod. 2017; 87: 147 ‐ 158.
dc.identifier.citedreferenceZhang JN, Lu HP, Bao XC, Shi Y, Zhang MH. Evaluation of the long‐term stability of micro‐screws under different loading protocols: a systematic review. Braz Oral Res. 2019; 33: e046.
dc.identifier.citedreferenceChen YJ, Chang HH, Huang CY, Hung HC, Lai EH, Yao CC. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res. 2007; 18: 768 ‐ 775.
dc.identifier.citedreferenceSimonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997; 89: 309 ‐ 319.
dc.identifier.citedreferenceKobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 2009; 19: 61 ‐ 72.
dc.identifier.citedreferenceNishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res. 2006; 9: 63 ‐ 70.
dc.identifier.citedreferenceKim T, Handa A, Iida J, Yoshida S. RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force. Arch Oral Biol. 2007; 52: 244 ‐ 250.
dc.identifier.citedreferenceKawasaki K, Takahashi T, Yamaguchi M, Kasai K. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod Craniofac Res. 2006; 9: 137 ‐ 142.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.