Show simple item record

Neuron‐specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD‐knockout mice

dc.contributor.authorSakellariou, Giorgos K.
dc.contributor.authorDavis, Carol S.
dc.contributor.authorShi, Yun
dc.contributor.authorIvannikov, Maxim V.
dc.contributor.authorZhang, Yiqiang
dc.contributor.authorVasilaki, Aphrodite
dc.contributor.authorMacleod, Gregory T.
dc.contributor.authorRichardson, Arlan
dc.contributor.authorVan Remmen, Holly
dc.contributor.authorJackson, Malcolm J.
dc.contributor.authorMcArdle, Anne
dc.contributor.authorBrooks, Susan V.
dc.date.accessioned2020-03-17T18:28:24Z
dc.date.available2020-03-17T18:28:24Z
dc.date.issued2014-04
dc.identifier.citationSakellariou, Giorgos K.; Davis, Carol S.; Shi, Yun; Ivannikov, Maxim V.; Zhang, Yiqiang; Vasilaki, Aphrodite; Macleod, Gregory T.; Richardson, Arlan; Van Remmen, Holly; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V. (2014). "Neuron‐specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD‐knockout mice." The FASEB Journal 28(4): 1666-1681.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154306
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Federation of American Societies for Experimental Biology
dc.subject.otheroxidative stress
dc.subject.otherheat‐shock protein
dc.subject.otherneuromuscular junction
dc.subject.otherSOD1
dc.titleNeuron‐specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD‐knockout mice
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154306/1/fsb2028004015.pdf
dc.identifier.doi10.1096/fj.13-240390
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceWard, W. F., Qi, W., Van Remmen, H., Zackert, W. E., Roberts, L. J., 2nd, and Richardson, A. ( 2005 ) Effects of age and caloric restriction on lipid peroxidation: measurement of oxidative stress by F2‐isoprostane levels./. Gerontol. A Biol. Sci. Med. Sci. 60, 847 – 851
dc.identifier.citedreferenceMecocci, P., Fano, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M. C., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M. F. ( 1999 ) Age‐dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radio. Biol. Med. 26, 303 – 308
dc.identifier.citedreferencePalomero, J., Vasilaki, A., Pye, D., McArdle, A., and Jackson, M.J. ( 2013 ) Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R351 – R358
dc.identifier.citedreferenceVasilaki, A., Mansouri, A., Remmen, H., van der Meulen, J. H., Larkin, L., Richardson, A. G., McArdle, A., Faulkner, J. A., and Jackson, M. J. ( 2006 ) Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5, 109 – 117
dc.identifier.citedreferenceJang, Y. C., Lustgarten, M. S., Liu, Y., Muller, F. L., Bhattacharya, A., Liang, H., Salmon, A. B., Brooks, S. V., Larkin, L., Hayworth, C. R., Richardson, A., and Van Remmen, H. ( 2010 ) Increased superoxide in vivo accelerates age‐associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J. 24, 1376 – 1390
dc.identifier.citedreferenceLarkin, L. M., Davis, C. S., Sims‐Robinson, C., Kostrominova, T. Y., Remmen, H. V., Richardson, A., Feldman, E. L., and Brooks, S. V. ( 2011 ) Skeletal muscle weakness due to deficiency of CuZn‐superoxide dismutase is associated with loss of functional innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1400 – R1407
dc.identifier.citedreferenceMuller, F. L., Song, W., Liu, Y., Chaudhuri, A., Pieke‐Dahl, S., Strong, R., Huang, T. T., Epstein, C. J., Roberts, L. J., 2nd, Csete, M., Faulkner, J. A., and Van Remmen, H. ( 2006 ) Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age‐dependent skeletal muscle atrophy. Free Radio. Biol. Med. 40, 1993 – 2004
dc.identifier.citedreferenceSakellariou, G. K., Pye, D., Vasilaki, A., Zibrik, L., Palomero, J., Kabayo, T., McArdle, F., Van Remmen, H., Richardson, A., Tidball, J. G., McArdle, A., and Jackson, M. J. ( 2011 ) Role of superoxide‐nitric oxide interactions in the accelerated age‐related loss of muscle mass in mice lacking Cu,Zn superoxide dismutase. Aging Cell 10, 749 – 760
dc.identifier.citedreferenceVasilaki, A., van der Meulen, J. H., Larkin, L., Harrison, D. C. Pearson, T., Van Remmen, H., Richardson, A., Brooks, S. V., Jackson, M. J., and McArdle, A. ( 2010 ) The age‐related failure of adaptive responses to contractile activity in skeletal muscle is mimicked in young mice by deletion of Cu,Zn superoxide dismutase. Aging Cell 9, 979 – 990
dc.identifier.citedreferenceLarsson, J. E., and Wahlstrom, G. ( 1998 ) The influence of age and administration rate on the brain sensitivity to propofol in rats. Acta Anaesthesiol. Scand. 42, 987 – 994
dc.identifier.citedreferenceSamuel, M. A., Valdez, G., Tapia, J. C., Lichtman, J. W., and Sanes, J. R. ( 2012 ) Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLoS ONE 7, e46663
dc.identifier.citedreferenceButikofer, L., Zurlinden, A., Bolliger, M. F., Kunz, B., and Sonderegger, P. ( 2011 ) Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J. 25, 4378 – 4393
dc.identifier.citedreferenceKulakowski, S. A., Parker, S. D., and Personius, K. E. ( 2011 ) Reduced TrkB expression results in precocious age‐like changes in neuromuscular structure, neurotransmission, and muscle function. J. Appl. Physiol. 111, 844 – 852
dc.identifier.citedreferenceFischer, L. R., Igoudjil, A., Magrane, J., Li, Y., Hansen, J. M., Manfredi, G., and Glass, J. D. ( 2011 ) SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. Brain 134, 196 – 209
dc.identifier.citedreferenceZhang, Y., Davis, C., Sakellariou, G. K., Shi, Y., Kayani, A. C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M. J., McArdle, A., Brooks, S. V., and Van Remmen, H. ( 2013 ) CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEBJ. 27, 3536 – 3548
dc.identifier.citedreferenceElchuri, S., Oberley, T. D., Qi, W., Eisenstein, R. S., Jackson Roberts, L., Van Remmen, H., Epstein, C. J., and Huang, T. T. ( 2005 ) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24, 367 – 380
dc.identifier.citedreferenceHuang, T. T., Yasunami, M., Carlson, E. J., Gillespie, A. M., Reaume, A. G., Hoffman, E. K., Chan, P. H., Scott, R. W., and Epstein, C. J. ( 1997 ) Superoxide‐mediated cytotoxicity in superoxide dismutase‐deficient fetal fibroblasts. Arch. Biochem. Biophys. 344, 424 – 432
dc.identifier.citedreferenceKaja, S., van de Ven, R. C., van Dijk, J. G., Verschuuren, J. J., Arahata, K., Frants, R. R., Ferrari, M. D., van den Maagdenberg, A. M., and Plomp, J. J. ( 2007 ) Severely impaired neuromuscular synaptic transmission causes muscle weakness in the Cacnalamutant mouse rolling Nagoya. Eur. J. Neurosci. 25, 2009 – 2020
dc.identifier.citedreferenceVan Remmen, H., Salvador, C., Yang, H., Huang, T. T., Epstein, C. J., and Richardson, A. ( 1999 ) Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse. Arch. Biochem. Biophys. 363, 91 – 97
dc.identifier.citedreferenceMorrow, J. D., and Roberts, L. J., 2nd ( 1999 ) Mass spectrometric quantification of F2‐isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol. 300, 3 – 12
dc.identifier.citedreferenceSakellariou, G. K., Vasilaki, A., Palomero, J., Kayani, A., Zibrik, L., McArdle, A., and Jackson, M. J. ( 2013 ) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid. Redox Signal. 18, 603 – 621
dc.identifier.citedreferencePerez, V. I., Bokov, A., Van Remmen, H., Mele, J., Ran, Q., Ikeno, Y., and Richardson, A. ( 2009 ) Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790, 628 – 638
dc.identifier.citedreferenceGems, D., and Doonan, R. ( 2009 ) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8, 1681 – 1687
dc.identifier.citedreferenceVan Remmen, H., and Richardson, A. ( 2001 ) Oxidative damage to mitochondria and aging. Exp. Gerontol. 36, 957 – 968
dc.identifier.citedreferenceFlood, D. G., Reaume, A. G., Gruner, J. A., Hoffman, E. K., Hirsch, J. D., Lin, Y. G., Dorfman, K. S., and Scott, R. W. ( 1999 ) Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. Am. J. Pathol. 155, 663 – 672
dc.identifier.citedreferenceMuller, F. L., Song, W., Jang, Y. C., Liu, Y., Sabia, M., Richardson, A., and Van Remmen, H. ( 2007 ) Denervation‐induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1159 – R1168
dc.identifier.citedreferenceCampbell, M. J., McComas, A. J., and Petito, F. ( 1973 ) Physiological changes in ageing muscles. J. Neurol. Neurosurg. Psychiatry 36, 174 – 182
dc.identifier.citedreferenceRowan, S. L., Rygiel, K., Purves‐Smith, F. M., Solbak, N. M., Turnbull, D. M., and Hepple, R. T. ( 2012 ) Denervation causes fiber atrophy and myosin heavy chain co‐expression in senescent skeletal muscle. PLoS ONE 7, e29082
dc.identifier.citedreferenceLarsson, L., Yu, F., Hook, P., Ramamurthy, B., Marx, J. O., and Pircher, P. ( 2001 ) Effects of aging on regulation of muscle contraction at the motor unit, muscle cell, and molecular levels. Int. J. Sports Nutr. Exerc. Metab. 11 ( Suppl. ), S28 – S43
dc.identifier.citedreferenceChai, R. J., Vukovic, J., Dunlop, S., Grounds, M. D., and Shavlakadze, T. ( 2011 ) Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS ONE 6, e28090
dc.identifier.citedreferenceEvans, W. J. ( 2010 ) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutr. 91, 1123S – 1127S
dc.identifier.citedreferenceLarsson, L. ( 1983 ) Histochemical characteristics of human skeletal muscle during aging. Acta Physiol. Scand. 117, 469 – 471
dc.identifier.citedreferencePorter, M. M., Vandervoort, A. A., and Lexell, J. ( 1995 ) Aging of human muscle: structure, function and adaptability. Scand. J. Med. Sci. Sports 5, 129 – 142
dc.identifier.citedreferenceLexell, J. ( 1995 ) Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 50 (Spec. No.), 11 – 16
dc.identifier.citedreferenceBroome, C. S., Kayani, A. C., Palomero, J., Dillmann, W. H., Mestril, R., Jackson, M. J., and McArdle, A. ( 2006 ) Effect of lifelong overexpression of HSP70 in skeletal muscle on age‐related oxidative stress and adaptation after nondamaging contractile activity. FASEB J. 20, 1549 – 1551
dc.identifier.citedreferenceReid, M. B., and Durham, W. J. ( 2002 ) Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging. Ann. N. Y. Acad. Sci. 959, 108 – 116
dc.identifier.citedreferenceVasilaki, A., Simpson, D., McArdle, F., McLean, L., Beynon, R. J., Van Remmen, H., Richardson, A. G., McArdle, A., Faulkner, J. A., and Jackson, M. J. ( 2007 ) Formation of 3‐nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle. Proteomics Clin. Appl. 1, 362 – 372
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.