Show simple item record

Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin

dc.contributor.authorRusskamp, Norman F.
dc.contributor.authorRuemmler, Robert
dc.contributor.authorRoewe, Julian
dc.contributor.authorMoore, Bethany B.
dc.contributor.authorWard, Peter A.
dc.contributor.authorBosmann, Markus
dc.date.accessioned2020-03-17T18:30:22Z
dc.date.available2020-03-17T18:30:22Z
dc.date.issued2015-09
dc.identifier.citationRusskamp, Norman F.; Ruemmler, Robert; Roewe, Julian; Moore, Bethany B.; Ward, Peter A.; Bosmann, Markus (2015). "Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin." The FASEB Journal 29(9): 3762-3772.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154372
dc.description.abstractExcessive activation of the complement system is detrimental in acute inflammatory disorders. In this study, we analyzed the role of complement‐derived anaphylatoxins in the pathogenesis of experimental acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in C57BL/6J mice. Intratracheal administration of recombinant mouse complement component (C5a) caused alveolar inflammation with abundant recruitment of Ly6‐G+CD11b+ leukocytes to the alveolar spaces and severe alveolar‐capillary barrier dysfunction (C5a‐ALI; EC50[C5a] = 20 ng/g body weight). Equimolar concentrations of C3a or desarginated C5a (C5adesArg) did not induce alveolar inflammation. The severity of C5a‐ALI was aggravated in C5‐deficient mice. Depletion of Ly6‐G+ cells and use of C5aR1‐/‐ bone marrow chimeras suggested an essential role of C5aR1+ hematopoietic cells in C5a‐ALI. Blockade of PI3K/Akt and MEK1/2 kinase pathways completely abrogated lung injury. The mechanistic description is that C5a altered the alveolar cytokine milieu and caused significant release of CC‐chemokines. Mice with genetic deficiency of CC‐chemokine receptor (CCR) type 5, the common receptor of chemokine (C‐C motif) ligand (CCL) 3, CCL4, and CCL5, displayed reduced lung damage. Moreover, treatment with a CCR5 antagonist, maraviroc, was protective against C5a‐ALI. In summary, our results suggest that the detrimental effects of C5a in this model are partly mediated through CCR5 activation downstream of C5aR1, which may be evaluated for potential therapeutic exploitation in ALI/ARDS.—Russkamp, N. F., Ruemmler, R., Roewe, J., Moore, B. B., Ward, P. A., Bosmann, M. Experimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin. FASEB J. 29, 3762‐3772 (2015). www.fasebj.org
dc.publisherThe Federation of American Societies for Experimental Biology
dc.publisherWiley Periodicals, Inc.
dc.subject.othercytokines
dc.subject.otherARDS
dc.subject.otherpolymorphonuclear neutrophils
dc.subject.otherC5aR1
dc.subject.othermaraviroc
dc.titleExperimental design of complement component 5a‐induced acute lung injury (C5a‐ALI): a role of CC‐chemokine receptor type 5 during immune activation by anaphylatoxin
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154372/1/fsb2029009014.pdf
dc.identifier.doi10.1096/fj.15-271635
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceKarsten, C. M., Laumonnier, Y., Eurich, B., Ender, F., Broker, K., Roy, S., Czabanska, A., Vollbrandt, T., Figge, J., and Köhl, J. ( 2015 ) Monitoring and cell‐specific deletion of C5aR1 using a novel floxed GFP‐C5aR1 reporter knock‐in mouse. J. Immunol. 194, 1841 – 1855
dc.identifier.citedreferenceMulligan, M. S., Schmid, E., Beck‐Schimmer, B., Till, G. O., Friedl, H. P., Brauer, R. B., Hugli, T. E., Miyasaka, M., Warner, R. L., Johnson, K. J., and Ward, P. A. ( 1996 ) Requirement and role of C5a in acute lung inflammatory injury in rats. J. Clin. Invest. 98, 503 – 512
dc.identifier.citedreferenceDoerschuk, C. M., Quinlan, W. M., Doyle, N. A., Bullard, D. C., Vestweber, D. Jones, M. L., Takei, F., Ward, P. A., and Beaudet, AL. ( 1996 ) Therole of P‐selectin and ICAM‐1 in acute lung injury as determined using blocking antibodies and mutant mice. J. Immunol. 157 4609 – 4614
dc.identifier.citedreferenceMulligan, M. S. Schmid, E. Till, G. O. Hugli, T. E. Friedl, H. P. Roth, R. A. and Ward P. A. ( 1997 ) C5a‐dependent up‐regulation in vivo of lung vascular P‐selectin. J. Immunol. 158 1857 – 1861
dc.identifier.citedreferenceCzermak, B. J., Sarma, V., Bless, N. M., Schmal, H., Friedl, H. P., and Ward P. A. ( 1999 ) In vitro and in vivo dependency of chemokine generation on C5a and TNF‐alpha. J. Immunol. 162, 2321 – 2325
dc.identifier.citedreferenceBosmann, M., Russkamp, N. F., Patel, V. R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2011 ) The outcome of polymicrobial sepsis is independent of T and B cells. Shock 36, 396 – 401
dc.identifier.citedreferenceHubbard, L. L., Ballinger, M. N., Wilke, C. A., and Moore, B. B. ( 2008 ) Comparison of conditioning regimens for alveolar macrophage reconstitution and innate immune function post bone marrow transplant. Exp. Lung Res. 34, 263 – 275
dc.identifier.citedreferenceBosmann, M., Grailer, J. J., Zhu, K., Matthay, M. A., Sarma, J. V., Zetoune, F. S., and Ward, P. A. ( 2012 ) Anti‐inflammatory effects of beta2 adrenergic receptor agonists in experimental acute lung injury. FASEB J. 26, 2137 – 2144
dc.identifier.citedreferenceGrommes, J., Drechsler, M., and Soehnlein, O. ( 2014 ) CCR5 and FPR1 mediate neutrophil recruitment in endotoxin‐induced lung injury. J. Innate Immun. 6, 111 – 116
dc.identifier.citedreferenceAtkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., and Sweatt, J. D. ( 1998 ) The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602 – 609
dc.identifier.citedreferenceBosmann, M., Haggadone, M. D., Hemmila, M. R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2012 ) Complement activation product C5a is a selective suppressor of TLR4‐induced, but not TLR3‐induced, production of IL‐27(p28) from macrophages. J. Immunol. 188, 5086 – 5093
dc.identifier.citedreferenceWetsel, R. A. ( 1995 ) Expression of the complement C5a anaphylatoxin receptor (C5aR) on non‐myeloid cells. Immunol. Lett. 44, 183 – 187
dc.identifier.citedreferenceRiedemann, N. C., Guo, R. F., Sarma, V. J., Laudes, I. J., Huber‐Lang, M., Warner, R. L., Albrecht, E. A., Speyer, C. L., and Ward, P. A. ( 2002 ) Expression and function of the C5a receptor in rat alveolar epithelial cells. J. Immunol. 168, 1919 – 1925
dc.identifier.citedreferenceGuo, R. F., and Ward, P. A. ( 2005 ) Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821 – 852
dc.identifier.citedreferenceBosmann, M., Patel, V. R., Russkamp, N. F., Pache, F., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2011 ) MyD88‐dependent production of IL‐17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway. FASEB J. 25, 4222 – 4232
dc.identifier.citedreferenceHenson, P. M., McCarthy, K., Larsen, G. L., Webster, R. O., Giclas, P. C., Dreisin, R. B., King, T. E., and Shaw, J. O. ( 1979 ) Complement fragments, alveolar macrophages, and alveolitis. Am. J. Pathol. 97, 93 – 110
dc.identifier.citedreferenceBosmann, M., Haggadone, M. D., Zetoune, F. S., Sarma, J. V., and Ward, P. A. ( 2013 ) The interaction between C5a and both C5aR and C5L2 receptors is required for production of G‐CSF during acute inflammation. Eur. J. Immunol. 43, 1907 – 1913
dc.identifier.citedreferenceAmara, U., Rittirsch, D., Flierl, M., Bruckner, U., Klos, A., Gebhard, F., Lambris, J. D., and Huber‐Lang, M. ( 2008 ) Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 632, 71 – 79
dc.identifier.citedreferenceGuilliams, M., De Kleer, I., Henri, S., Post, S., Vanhoutte, L., De Prijck, S., Deswarte, K., Malissen, B., Hammad, H., and Lambrecht, B. N. ( 2013 ) Alveolar macrophages develop from fetal monocytes that differentiate into long‐lived cells in the first week of life via GM‐CSF. J. Exp. Med. 210, 1977 – 1992
dc.identifier.citedreferenceTarling, J. D., Lin, H. S., and Hsu, S. ( 1987 ) Self‐renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J. Leukoc. Biol. 42, 443 – 446
dc.identifier.citedreferenceFinsterbusch, M., Voisin, M. B., Beyrau, M., Williams, T. J., and Nourshargh, S. ( 2014 ) Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J. Exp. Med. 211, 1307 – 1314
dc.identifier.citedreferenceGrailer, J. J., Bosmann, M., and Ward, P. A. ( 2012 ) Regulatory effects of C5a on IL‐17A, IL‐17F, and IL‐23. Front. Immunol. 3, 387
dc.identifier.citedreferenceBless, N. M., Huber‐Lang, M., Guo, R. F., Warner, R. L., Schmal, H., Czermak, B. J., Shanley, T. P., Crouch, L. D., Lentsch, A. B., Sarma, V., Mulligan, M. S., Friedl, H. P., and Ward, P. A. ( 2000 ) Role of CC chemokines (macrophage inflammatory protein‐1 beta, monocyte chemoattractant protein‐1, RANTES) in acute lung injury in rats. J. Immunol. 164, 2650 – 2659
dc.identifier.citedreferenceHüttenrauch, F., Pollok‐Kopp, B., and Oppermann, M. ( 2005 ) G protein‐coupled receptor kinases promote phosphorylation and beta‐arrestin‐mediated internalization of CCR5 homo‐ and heterooligomers. J. Biol. Chem. 280, 37503 – 37515
dc.identifier.citedreferenceRittirsch, D., Flierl, M. A., Day, D. E., Nadeau, B. A., McGuire, S. R., Hoesel, L. M., Ipaktchi, K., Zetoune, F. S., Sarma, J. V., Leng, L., Huber‐Lang, M. S., Neff, T. A., Bucala, R., and Ward, P. A. ( 2008 ) Acute lung injury induced by lipopolysaccharide is independent of complement activation. J. Immunol. 180, 7664 – 7672
dc.identifier.citedreferenceFlierl, M. A., Perl, M., Rittirsch, D., Bartl, C., Schreiber, H., Fleig, V., Schlaf, G., Liener, U., Brueckner, U. B., Gebhard, F., and Huber‐Lang, M. S. ( 2008 ) The role of C5a in the innate immune response after experimental blunt chest trauma. Shock 29, 25 – 31
dc.identifier.citedreferenceSeok, J., Warren, H. S., Cuenca, A. G., Mindrinos, M. N., Baker, H. V., Xu, W., Richards, D. R., McDonald‐Smith, G. P., Gao, H., Hennessy, L., Finnerty, C. C., Lopez, C. M., Honari, S., Moore, E. E., Minei, J. P., Cuschieri, J., Bankey, P. E., Johnson, J. L., Sperry, J., Nathens, A. B., Billiar, T. R., West, M. A., Jeschke, M. G., Klein, M. B., Gamelli, R. L., Gibran, N. S., Brownstein, B. H., Miller‐Graziano, C., Calvano, S. E., Mason, P. H., Cobb, J. P., Rahme, L. G., Lowry, S. F., Maier, R. V., Moldawer, L. L., Herndon, D. N., Davis, R. W., Xiao, W., and Tompkins, R. G. Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. ( 2013 ) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507 – 3512
dc.identifier.citedreferenceMatthay, M. A., Ware, L. B., and Zimmerman, G. A. ( 2012 ) The acute respiratory distress syndrome. J. Clin. Invest. 122, 2731 – 2740
dc.identifier.citedreferenceRubenfeld, G. D., Caldwell, E., Peabody, E., Weaver, J., Martin, D. P., Neff, M., Stern, E. J., and Hudson, L. D. ( 2005 ) Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353, 1685 – 1693
dc.identifier.citedreferencePrice, L. C., McAuley, D. F., Marino, P. S., Finney, S. J., Griffiths, M. J., and Wort, S. J. ( 2012 ) Pathophysiology of pulmonary hypertension in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L803 – L815
dc.identifier.citedreferenceBosmann, M., and Ward, P. A. ( 2014 ) Protein‐based therapies for acute lung injury: targeting neutrophil extracellular traps. Expert Opin. Ther. Targets 18, 703 – 714
dc.identifier.citedreferenceRicklin, D., and Lambris, J. D. ( 2013 ) Complement in immune and inflammatory disorders: pathophysiological mechanisms. J. Immunol. 190, 3831 – 3838
dc.identifier.citedreferenceStrunk, R. C., Eidlen, D. M., and Mason, R. J. ( 1988 ) Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J. Clin. Invest. 81, 1419 – 1426
dc.identifier.citedreferenceSkattum, L., van Deuren, M., van der Poll, T., and Truedsson, L. ( 2011 ) Complement deficiency states and associated infections. Mol. Immunol. 48, 1643 – 1655
dc.identifier.citedreferenceBosmann, M., and Ward, P. A. ( 2012 ) Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv. Exp. Med. Biol. 946, 147 – 159
dc.identifier.citedreferenceHuber‐Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., Lambris, J. D., Warner, R. L., Flierl, M. A., Hoesel, L. M., Gebhard, F., Younger, J. G., Drouin, S. M., Wetsel, R. A., and Ward, P. A. ( 2006 ) Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682 – 687
dc.identifier.citedreferenceHuber‐Lang, M., Younkin, E. M., Sarma, J. V., Riedemann, N., McGuire, S. R., Lu, K. T., Kunkel, R., Younger, J. G., Zetoune, F. S., and Ward, P. A. ( 2002 ) Generation of C5a by phagocytic cells. Am. J. Pathol. 161, 1849 – 1859
dc.identifier.citedreferenceMueller‐Ortiz, S. L., Wang, D., Morales, J. E., Li, L., Chang, J. Y., and Wetsel, R. A. ( 2009 ) Targeted disruption of the gene encoding the murinesmallsubunitofcarboxypeptidaseN(CPN1) causes susceptibility to C5a anaphylatoxin‐mediated shock. J. Immunol. 182, 6533 – 6539
dc.identifier.citedreferenceWebster, R. O., Larsen, G. L., and Henson, P. M. ( 1982 ) In vivo clearance and tissue distribution of C5a and C5a des arginine complement fragments in rabbits. J. Clin. Invest. 70, 1177 – 1183
dc.identifier.citedreferenceGerard, N. P., and Gerard, C. ( 1991 ) The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614 – 617
dc.identifier.citedreferenceOkinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M. B., Brodbeck, R. M., Krause, J. E., Choe, H. R., Gerard, N. P., and Gerard, C. ( 2003 ) C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406 – 9415
dc.identifier.citedreferenceBosmann, M., Sarma, J. V., Atefi, G., Zetoune, F. S., and Ward, P. A. ( 2012 ) Evidence for anti‐inflammatory effects of C5a on the innate IL‐17A/IL‐23 axis. FASEB J. 26, 1640 – 1651
dc.identifier.citedreferenceLi, R., Coulthard, L. G., Wu, M. C., Taylor, S. M., and Woodruff, T. M. ( 2013 ) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J. 27, 855 – 864
dc.identifier.citedreferenceRobbins, R. A., Russ, W. D., Rasmussen, J. K., and Clayton, M. M. ( 1987 ) Activation of the complement system in the adult respiratory distress syndrome. Am. Rev. Respir. Dis.135, 651 – 658
dc.identifier.citedreferenceKambas, K., Markiewski, M. M., Pneumatikos, I. A., Rafail, S. S., Theodorou, V., Konstantonis, D., Kourtzelis, I., Doumas, M. N., Magotti, P., Deangelis, R. A., Lambris, J. D., and Ritis, K. D. ( 2008 ) C5a and TNF‐alpha up‐regulate the expression of tissue factor in intra‐alveolar neutrophils of patients with the acute respiratory distress syndrome. J. Immunol. 180, 7368 – 7375
dc.identifier.citedreferenceTill, G. O., Johnson, K. J., Kunkel, R., and Ward, P. A. ( 1982 ) Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J. Clin. Invest. 69, 1126 – 1135
dc.identifier.citedreferenceLarsen, G. L., McCarthy, K., Webster, R. O., Henson, J., and Henson, P. M. ( 1980 ) A differential effect of C5a and C5a des Arg in the induction of pulmonary inflammation. Am. J. Pathol. 100, 179 – 192
dc.identifier.citedreferenceStimler, N. P., Hugli, T. E., and Bloor, C. M. ( 1980 ) Pulmonary injury induced by C3a and C5a anaphylatoxins. Am. J. Pathol. 100, 327 – 348
dc.identifier.citedreferenceBosmann, M., Grailer, J. J., Ruemmler, R., Russkamp, N. F., Zetoune, F. S., Sarma, J. V., Standiford, T. J., and Ward, P. A. ( 2013 ) Extracellular histones are essential effectors of C5aR‐ and C5L2‐mediated tissue damage and inflammation in acute lung injury. FASEB J. 27, 5010 – 5021
dc.identifier.citedreferenceTrujillo, G., Habiel, D. M., Ge, L., Ramadass, M., Cooke, N. E., and Kew, R. R. ( 2013 ) Neutrophil recruitment to the lung in both C5a‐and CXCL1‐induced alveolitis is impaired in vitamin D‐binding protein‐deficient mice. J. Immunol. 191, 848 – 856
dc.identifier.citedreferenceHeller, T., Hennecke, M., Baumann, U., Gessner, J. E., zu Vilsendorf, A. M., Baensch, M., Boulay, F., Kola, A., Klos, A., Bautsch, W., and Köhl, J. ( 1999 ) Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J. Immunol. 163, 985 – 994
dc.identifier.citedreferenceStevens, J. H., O’Hanley, P., Shapiro, J. M., Mihm, F. G., Satoh, P. S., Collins, J. A., and Raffin, T. A. ( 1986 ) Effects of anti‐C5a antibodies on the adult respiratory distress syndrome in septic primates. J. Clin. Invest. 77, 1812 – 1816
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.