Show simple item record

A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations

dc.contributor.authorAmiri‐farahani, Anahita
dc.contributor.authorAllen, Robert J.
dc.contributor.authorLi, King‐fai
dc.contributor.authorNabat, Pierre
dc.contributor.authorWestervelt, Daniel M.
dc.date.accessioned2020-03-17T18:34:21Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-03-17T18:34:21Z
dc.date.issued2020-03-27
dc.identifier.citationAmiri‐farahani, Anahita ; Allen, Robert J.; Li, King‐fai ; Nabat, Pierre; Westervelt, Daniel M. (2020). "A La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations." Journal of Geophysical Research: Atmospheres 125(6): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/154503
dc.description.abstractThe climate response to atmospheric aerosols, including their effects on dominant modes of climate variability like El Niñoâ Southern Oscillation (ENSO), remains highly uncertain. This is due to several sources of uncertainty, including aerosol emission, transport, removal, vertical distribution, and radiative properties. Here, we conduct coupled oceanâ atmosphere simulations with two versions of the Community Earth System Model (CESM) driven by semiempirical fineâ mode aerosol direct radiative effects without dust and sea salt. Aerosol atmospheric heating off the west coast of Africaâ most of which is due to biomass burningâ leads to a significant atmospheric dynamical response, including localized ascent and upperâ level divergence. Coupled Model Intercomparison Project version 6 (CMIP6) biomass burning simulations support this response. Moreover, CESM shows that the anomalous aerosol heating in the Atlantic triggers an atmospheric teleconnection to the tropical Pacific, including strengthening of the Walker circulation. The easterly trade winds accelerate, and through coupled oceanâ atmosphere processes and the Bjerknes feedback, a La Niñaâ like response develops. Observations also support a relationship between south African biomass burning emissions and ENSO, with La Niña events preceding strong south African biomass burning in boreal fall. Our simulations suggest a possible twoâ way feedback between ENSO and south African biomass burning, with La Niña promoting more biomass burning emissions, which may then strengthen the developing La Niña.Key PointsSouth African biomass burning aerosol locally warms the atmosphereThis heating drives local ascent and divergence, triggering a teleconnection to the PacificThe Pacific Walker circulation strengthens, and a La Niñaâ like response develops
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherteleconnection
dc.subject.otherAfrica
dc.subject.otherLa Nina
dc.subject.otherclimate model
dc.subject.otheraerosol
dc.subject.otherbiomass
dc.titleA La Niñaâ Like Climate Response to South African Biomass Burning Aerosol in CESM Simulations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154503/1/jgrd56111_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154503/2/jgrd56111-sup-0001-Figure_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154503/3/jgrd56111.pdf
dc.identifier.doi10.1029/2019JD031832
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRotstayn, L. D., & Lohmann, U. ( 2002 ). Tropical rainfall trends and the indirect aerosol effect. Journal Climate, 15, 2103 â 2116.
dc.identifier.citedreferenceStier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin, M., & Zhou, C. ( 2013 ). Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom prescribed intercomparison study. Atmospheric Chemistry and Physics, 13 ( 6 ), 3245 â 3270. https://doi.org/10.5194/acp-13-3245-2013
dc.identifier.citedreferenceStjern, C. W., Lund, M. T., Samset, B. H., Myhre, G., Forster, P. M., Andrews, T., & Voulgarakis, A. ( 2019 ). Arctic amplification response to individual climate drivers. Journal of Geophysical Research: Atmospheres, 124, 6698 â 6717. https://doi.org/10.1029/2018JD029726
dc.identifier.citedreferenceStjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ã ., Andrews, T., & Voulgarakis, A. ( 2017 ). Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. Journal of Geophysical Research: Atmospheres, 122, 11,462 â 11,481. https://doi.org/10.1002/2017JD027326
dc.identifier.citedreferenceTakahashi, C., & Watanabe, M. ( 2016 ). Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Climate Change, 6, 768EP. https://doi.org/10.1038/nclimate2996
dc.identifier.citedreferenceTang, T., Shindell, D., Samset, B. H., Boucher, O., Forster, P. M., Hodnebrog, Ã ., & Takemura, T. ( 2018 ). Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 18 ( 11 ), 8439 â 8452. https://doi.org/10.5194/acp-18-8439-2018
dc.identifier.citedreferenceTextor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., & Tie, X. ( 2006 ). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 6, 1777 â 1813. https://doi.org/10.5194/acp-6-1777-2006
dc.identifier.citedreferenceTosca, M. G., Randerson, J. T., & Zender, C. S. ( 2013 ). Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 13 ( 10 ), 5227 â 5241. https://doi.org/10.5194/acp-13-5227-2013
dc.identifier.citedreferenceTrenberth, K. E., & Caron, J. M. ( 2000 ). The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13 ( 24 ), 4358 â 4365. https://doi.org/10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2
dc.identifier.citedreferenceUndorf, S., Polson, D., Bollasina, M. A., Ming, Y., Schurer, A., & Hegerl, G. C. ( 2018 ). Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation. Journal of Geophysical Research: Atmospheres, 123, 4871 â 4889. https://doi.org/10.1029/2017JD027711
dc.identifier.citedreferencevan Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A. L., Field, R. D., & van der Werf, G. R. ( 2017 ). Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750â 2015). Geoscientific Model Development, 10 ( 9 ), 3329 â 3357. https://doi.org/10.5194/gmd-10-3329-2017
dc.identifier.citedreferencevan der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., & van Leeuwen, T. T. ( 2010 ). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997â 2009). Atmospheric Chemistry and Physics, 10, 11,707 â 11,735. https://doi.org/10.5194/acp-10-11707-2010
dc.identifier.citedreferencevan der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., & Dolman, A. J. ( 2008 ). Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 22, GB3028. https://doi.org/10.1029/2007GB003122
dc.identifier.citedreferencevan der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., & Kasibhatla, P. S. ( 2017 ). Global fire emissions estimates during 1997â 2016. Earth System Science Data, 9 ( 2 ), 697 â 720. https://doi.org/10.5194/essd-9-697-2017
dc.identifier.citedreferenceWang, C., Kucharski, F., Barimalala, R., & Bracco, A. ( 2009 ). Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorologische Zeitschrift, 18 ( 4 ), 445 â 454. https://doi.org/10.1127/0941-2948/2009/0394
dc.identifier.citedreferenceWard, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., & Hess, P. G. ( 2012 ). The changing radiative forcing of fires: Global model estimates for past, present and future. Atmospheric Chemistry and Physics, 12 ( 22 ), 10,857 â 10,886. https://doi.org/10.5194/acp-12-10857-2012
dc.identifier.citedreferenceWestervelt, D. M., Conley, A. J., Fiore, A. M., Lamarque, J. F., Shindell, D. T., Previdi, M., & Horowitz, L. W. ( 2018 ). Connecting regional aerosol emissions reductions to local and remote precipitation responses. Atmospheric Chemistry and Physics, 18 ( 16 ), 12,461 â 12,475. https://doi.org/10.5194/acp-18-12461-2018
dc.identifier.citedreferenceWestervelt, D. M., Mascioli, N. R., Fiore, A. M., Conley, A. J., Lamarque, J.â F., Shindell, D. T., Faluvegi, G., Previdi, M., Correa, G., & Horowitz, L. W. ( 2019 ). Local and remote mean and extreme temperature response to regional aerosol emissions reductions. Atmospheric Chemistry and Physics Discussions. https://doi.org/10.5194/acp-2019-1096
dc.identifier.citedreferenceWilcox, L. J., Dunstone, N., Lewinschal, A., Bollasina, M., Ekman, A. M. L., & Highwood, E. J. ( 2019 ). Mechanisms for a remote response to Asian anthropogenic aerosol in boreal winter. Atmospheric Chemistry and Physics, 19 ( 14 ), 9081 â 9095. https://doi.org/10.5194/acp-19-9081-2019
dc.identifier.citedreferenceWilcox, L. J., Highwood, E. J., & Dunstone, N. J. ( 2013 ). The influence of anthropogenic aerosol on multiâ decadal variations of historical global climate. Environmental Research Letters, 8, 24033. https://doi.org/10.1088/1748-9326/8/2/024033
dc.identifier.citedreferenceWinker, D. M., Tackett, J. L., Getzewich, B. J., Liu, Z., Vaughan, M. A., & Rogers, R. R. ( 2013 ). The global 3â D distribution of tropospheric aerosols as characterized by CALIOP. Atmospheric Chemistry and Physics, 13 ( 6 ), 3345 â 3361. https://doi.org/10.5194/acp-13-3345-2013
dc.identifier.citedreferenceYang, Y., Russell, L. M., Lou, S., Lamjiri, M. A., Liu, Y., Singh, B., & Ghan, S. J. ( 2016 ). Changes in sea salt emissions enhance ENSO variability. Journal of Climate, 29 ( 23 ), 8575 â 8588. https://doi.org/10.1175/JCLI-D-16-0237.1
dc.identifier.citedreferenceYu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., & Diehl, T. ( 2010 ). Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. Journal of Geophysical Research, 115, D00H30. https://doi.org/10.1029/2009JD013364
dc.identifier.citedreferenceZarzycki, C. M., & Bond, T. C. ( 2010 ). How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters, 37, L20807. https://doi.org/10.1029/2010GL044555
dc.identifier.citedreferenceZhang, G. J., & McFarlane, N. A. ( 1995 ). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center generalâ circulation model. Atmosphereâ Ocean, 33, 407 â 446.
dc.identifier.citedreferenceZuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M., & Formenti, P. ( 2016 ). Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bulletin of the American Meteorological Society, 97 ( 7 ), 1131 â 1135. https://doi.org/10.1175/BAMS-D-15-00082.1
dc.identifier.citedreferenceZuidema, P., Sedlacek III, A. J., Flynn, C., Springston, S., Delgadillo, R., Zhang, J., & Muradyan, P. ( 2018 ). The Ascension Island boundary layer in the remote southeast Atlantic is often smoky. Geophysical Research Letters, 45, 4456 â 4465. https://doi.org/10.1002/2017GL076926
dc.identifier.citedreferenceAcosta Navarro, J. C., Varma, V., Riipinen, I., Seland, à ., KirkevÃ¥g, A., Struthers, H., & Ekman, A. M. L. ( 2016 ). Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience, 9 ( 4 ), 277 â 281. https://doi.org/10.1038/ngeo2673
dc.identifier.citedreferenceAdebiyi, A. A., & Zuidema, P. ( 2016 ). The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society, 142, 1574 â 1589. https://doi.org/10.1002/qj.2765
dc.identifier.citedreferenceAdler, R., Huffman, G. J., Chang, A., & Ferraro, R. ( 2003 ). The versionâ 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979â present). Journal of Hydrometeorology, 4 ( 6 ), 1147 â 1167.
dc.identifier.citedreferenceAllan, R. J., & Ansell, T. J. ( 2006 ). A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850â 2004. Journal Climate, 19, 5816 â 5842.
dc.identifier.citedreferenceAllen, R. J. ( 2015 ). A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. Journal of Geophysical Research: Atmospheres, 120, 9087 â 9102. https://doi.org/10.1002/2015JD023623
dc.identifier.citedreferenceAllen, R. J., & Ajoku, O. ( 2016 ). Future aerosol reduction and widening of the northern tropical belt. Journal of Geophysical Research: Atmospheres, 121, 6765 â 6786. https://doi.org/10.1002/2016JD024803
dc.identifier.citedreferenceAllen, R. J., Amiriâ Farahani, A., Lamarque, J. F., Smith, C., Shindell, D., Hassan, T., & Chung, C. E. ( 2019 ). Observationallyâ constrained aerosolâ cloud semiâ direct effects. npj Climate and Atmospheric Science, 2, 16.
dc.identifier.citedreferenceAllen, R. J., Evan, A. T., & Booth, B. B. B. ( 2015 ). Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. Journal of Climate, 28 ( 20 ), 8219 â 8246. https://doi.org/10.1175/JCLI-D-15-0148.1
dc.identifier.citedreferenceAllen, R. J., & Landuyt, W. ( 2014 ). The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport. Journal of Geophysical Research: Atmospheres, 119, 4808 â 4835. https://doi.org/10.1002/2014JD021595
dc.identifier.citedreferenceAllen, R. J., Norris, J. R., & Kovilakam, M. ( 2014 ). Influence of anthropogenic aerosols and the Pacific Decadal Oscillation of tropical belt width. Nature Geoscience, 7, 270 â 274.
dc.identifier.citedreferenceAllen, R. J., & Sherwood, S. C. ( 2011 ). The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dynamite, 36, 1959 â 1978. https://doi.org/10.1007/s00382-010-0898-8
dc.identifier.citedreferenceAllen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. ( 2012a ). The equilibrium response to idealized thermal forcings in a comprehensive GCM: Implications for recent tropical expansion. Atmospheric Chemistry and Physics, 12, 4795 â 4816. https://doi.org/10.5194/acp-12-4795-2012
dc.identifier.citedreferenceAllen, R. J., Sherwood, S. C., Norris, J. R., & Zender, C. S. ( 2012b ). Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350 â 354. https://doi.org/10.1038/nature11097
dc.identifier.citedreferenceAndela, N., & van der Werf, G. R. ( 2014 ). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4 ( 9 ), 791 â 795. https://doi.org/10.1038/nclimate2313
dc.identifier.citedreferenceBanâ Weiss, G. A., Cao, L., Bala, G., & Caldeira, K. ( 2012 ). Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dynamite, 38, 897 â 911. https://doi.org/10.1007/s00382-011-1052-y
dc.identifier.citedreferenceBiasutti, M., & Giannini, A. ( 2006 ). Robust Sahel drying in response to late 20th century forcings. Geophysical Research Letters, 33, L11706. https://doi.org/10.1029/2006GL026067
dc.identifier.citedreferenceBollasina, M. A., Ming, Y., & Ramaswamy, V. ( 2011 ). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334 ( 6055 ), 502 â 505. https://doi.org/10.1126/science.1204994
dc.identifier.citedreferenceBond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., & Trautmann, N. M. ( 2007 ). Historical emissions of black and organic carbon aerosol from energy related combustion, 1850â 2000. Global Biogeochemical Cycles, 21, GB2018. https://doi.org/10.1029/2006GB002840
dc.identifier.citedreferenceBond, T. C., Doherty, S. J., & Hahey, D. W. ( 2013 ). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research, 118, 5380 â 5552. https://doi.org/10.1002/jgrd.50171
dc.identifier.citedreferenceBooth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., & Bellouin, N. ( 2012 ). Aerosols implicated as a prime driver of twentiethâ century North Atlantic climate variability. Nature, 484 ( 7393 ), 228 â 232.
dc.identifier.citedreferenceBoucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., & Zhang, X. ( 2013 ). Clouds and aerosols. In T. F. Stocker, D. Qin, G.â K. Plattner, M. Tignor, S. K. Allen, & Boschung, J. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
dc.identifier.citedreferenceBriegleb, B. P. ( 1992 ). Deltaâ Eddington approximation for solar radiation in the NCAR Community Climate Model. Journal of Geophysical Research, 97, 7603 â 7612. https://doi.org/10.1029/92JD00291
dc.identifier.citedreferenceChand, D., Wood, R., Anderson, T. L., Satheesh, S. K., & Charlson, R. J. ( 2009 ). Satelliteâ derived direct radiative effect of aerosols dependent on cloud cover. Nature Geoscience, 2, 181 â 184.
dc.identifier.citedreferenceChiang, J. C. H., & Vimont, D. J. ( 2004 ). Analogous Pacific and Atlantic meridional modes of tropical atmosphereâ ocean variability. Journal of Climate, 17 ( 21 ), 4143 â 4158. https://doi.org/10.1175/JCLI4953.1
dc.identifier.citedreferenceChin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., & Nakajima, T. ( 2002 ). Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements. Journal of the Atmospheric Sciences, 59, 461 â 483.
dc.identifier.citedreferenceChoi, J. O., & Chung, C. E. ( 2014 ). Sensitivity of aerosol direct radiative forcing to aerosol vertical profile. Tellus B, 66, 24,376. https://doi.org/10.3402/tellusb.v66.24376
dc.identifier.citedreferenceChung, C. E. ( 2006 ). Steady vs. fluctuating aerosol radiative forcing in a climate model. Journal of the Korean Meteorological Society, 42 ( 6 ), 411 â 417.
dc.identifier.citedreferenceChung, C. E., Chu, J. E., Lee, Y., van Noije, T., Jeoung, H., Ha, K. J., & Marks, M. ( 2016 ). Global fineâ mode aerosol radiative effect, as constrained by comprehensive observations. Atmospheric Chemistry and Physics, 16 ( 13 ), 8071 â 8080. https://doi.org/10.5194/acp-16-8071-2016
dc.identifier.citedreferenceChung, C., & Ramanathan, V. ( 2006 ). Weakening of the north Indian SST gradients and the monsoon rainfall in India and the Sahel. Journal Climate, 19, 2036 â 2045.
dc.identifier.citedreferenceChung, C. E., Ramanathan, V., & Decremer, D. ( 2012 ). Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proceedings of the National Academy of Sciences, 109 ( 29 ), 11,624 â 11,629. https://doi.org/10.1073/pnas.1203707109
dc.identifier.citedreferenceChung, C. E., Ramanathan, V., Kim, D., & Podgorny, I. A. ( 2005 ). Global anthropogenic aerosol direct forcing derived from satellite and groundâ based observations. Journal of Geophysical Research, 110, D24207. https://doi.org/10.1029/2005JD006356
dc.identifier.citedreferenceClough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cadyâ Pereira, K., & Brown, P. D. ( 2005 ). Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy & Radiative Transfer, 91, 233 â 244. https://doi.org/10.1016/j.jqsrt.2004.05.058
dc.identifier.citedreferenceCoakley, J. A., Cess, R. D., & Yurevich, F. B. ( 1983 ). The effect of tropospheric aerosols on the Earth’s radiation budget: A paramterization for climate models. Journal of the Atmospheric Sciences, 40, 116 â 138. https://doi.org/10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2
dc.identifier.citedreferenceCohen, J. B., & Wang, C. ( 2014 ). Estimating global black carbon emissions using a topâ down Kalman Filter approach. Journal of Geophysical Research: Atmospheres, 119, 307 â 323. https://doi.org/10.1002/2013JD019912
dc.identifier.citedreferenceCollins, W. J., Lamarque, J. F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., & Smith, S. J. ( 2017 ). AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 10 ( 2 ), 585 â 607. https://doi.org/10.5194/gmd-10-585-2017
dc.identifier.citedreferencede Graaf, M., Bellouin, N., Tilstra, L. G., Haywood, J., & Stammes, P. ( 2014 ). Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009. Geophysical Research Letters, 41, 7723 â 7730. https://doi.org/10.1002/2014GL061103
dc.identifier.citedreferencede Graaf, M., Tilstra, L. G., Wang, P., & Stammes, P. ( 2012 ). Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry. Journal of Geophysical Research, 117, D07207. https://doi.org/10.1029/2011JD017160
dc.identifier.citedreferenceDeser, C., Alexander, M. A., Xie, S. P., & Phillips, A. S. ( 2010 ). Sea surface temperature variability: Patterns and mechanisms. Annual Review of Marine Science, 2, 114 â 143. https://doi.org/10.1146/annurev-marine-120408-151453
dc.identifier.citedreferenceDing, H., Keenlyside, N. S., & Latif, M. ( 2012 ). Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dynamics, 38 ( 9 ), 1965 â 1972. https://doi.org/10.1007/s00382-011-1097-y
dc.identifier.citedreferenceEngland, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., & Santoso, A. ( 2014 ). Recent intensification of windâ driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222 EP. https://doi.org/10.1038/nclimate2106
dc.identifier.citedreferenceFeng, N., & Christopher, S. A. ( 2015 ). Measurementâ based estimates of direct radiative effects of absorbing aerosols above clouds. Journal of Geophysical Research: Atmospheres, 120, 6908 â 6921. https://doi.org/10.1002/2015JD023252
dc.identifier.citedreferenceFrauen, C., & Dommenget, D. ( 2012 ). Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophysical Research Letters, 39, L02706. https://doi.org/10.1029/2011GL050520
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., & Zhao, B. ( 2017 ). The Modernâ Era Retrospective Analysis for Research and Applications, Version 2 (MERRAâ 2). Journal of Climate, 30 ( 14 ), 5419 â 5454. https://doi.org/10.1175/JCLI-D-16-0758.1
dc.identifier.citedreferenceLewinschal, A., Ekman, A. M. L., & Kornich, H. ( 2013 ). The role of precipitation in aerosolâ induced changes in Northern Hemisphere wintertime stationary waves. Climate Dynamics, 41, 647 â 661.
dc.identifier.citedreferenceGettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., & Li, J. L. F. ( 2010 ). Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. Journal of Geophysical Research, 115, D18216. https://doi.org/10.1029/2009JD013797
dc.identifier.citedreferenceGrandey, B. S., Lee, H. H., & Wang, C. ( 2016 ). Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires. Atmospheric Chemistry and Physics, 16 ( 22 ), 14,495 â 14,513. https://doi.org/10.5194/acp-16-14495-2016
dc.identifier.citedreferenceGuo, L., Turner, A. G., & Highwood, E. J. ( 2016 ). Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM. Journal of Climate, 29 ( 19 ), 6937 â 6955. https://doi.org/10.1175/JCLI-D-15-0728.1
dc.identifier.citedreferenceHack, J. ( 1994 ). Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). Journal of Geophysical Research, 99, 5551 â 5568.
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., & Marshall, S. ( 2013 ). The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 â 1360. https://doi.org/10.1175/BAMS-D-12-00121.1
dc.identifier.citedreferenceHwang, Y. T., Frierson, D. M. W., & Kang, S. M. ( 2013 ). Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophysical Research Letters, 40, 2845 â 2850. https://doi.org/10.1002/grl.50502
dc.identifier.citedreferenceIacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. ( 2008 ). Radiative forcing by longâ lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, D13103. https://doi.org/10.1029/2008JD009944
dc.identifier.citedreferenceJiang, Y., Lu, Z., Liu, X., Qian, Y., Zhang, K., Wang, Y., & Yang, X. Q. ( 2016 ). Impacts of global openâ fire aerosols on direct radiative, cloud and surfaceâ albedo effects simulated with CAM5. Atmospheric Chemistry and Physics, 16 ( 23 ), 14,805 â 14,824. https://doi.org/10.5194/acp-16-14805-2016
dc.identifier.citedreferenceJoseph, J. H., Wiscombe, W. J., & Weinman, J. A. ( 1976 ). The deltaâ Eddington approximation for radiative flux transfer. Journal of the Atmospheric Sciences, 33, 2452 â 2459. https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
dc.identifier.citedreferenceKaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., & van der Werf, G. R. ( 2012 ). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9 ( 1 ), 527 â 554. https://doi.org/10.5194/bg-9-527-2012
dc.identifier.citedreferenceKaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., & Rajagopalan, B. ( 1998 ). Analyses of global sea surface temperature 1856â 1991. Journal of Geophysical Research, 103 ( C9 ), 18,567 â 18,589. https://doi.org/10.1029/97JC01736
dc.identifier.citedreferenceKeenlyside, N. S., Ding, H., & Latif, M. ( 2013 ). Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophysical Research Letters, 40, 2278 â 2283. https://doi.org/10.1002/grl.50362
dc.identifier.citedreferenceKeenlyside, N. S., & Latif, M. ( 2007 ). Understanding equatorial Atlantic interannual variability. Journal of Climate, 20 ( 1 ), 131 â 142. https://doi.org/10.1175/JCLI3992.1
dc.identifier.citedreferenceKoch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y., & Zhao, Y. ( 2009 ). Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 9 ( 22 ), 9001 â 9026.
dc.identifier.citedreferenceKovilakam, M., & Mahajan, S. ( 2015 ). Black carbon aerosolâ induced Northern Hemisphere tropical expansion. Geophysical Research Letters, 42, 4964 â 4972. https://doi.org/10.1002/2015GL064559
dc.identifier.citedreferenceKristjansson, J. E., Iversen, T., Kirkevag, A., Seland, O., & Debernard, J. ( 2005 ). Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks. Journal of Geophysical Research, 110, D24206. https://doi.org/10.1029/2005JD006299
dc.identifier.citedreferenceKucharski, F., Kang, I. S., Farneti, R., & Feudale, L. ( 2011 ). Tropical Pacific response to 20th century Atlantic warming. Geophysical Research Letters, 38, L03702. https://doi.org/10.1029/2010GL046248
dc.identifier.citedreferenceKucharski, F., Parvin, A., Rodriguezâ Fonseca, B., Farneti, R., Martinâ Ray, M., Polo, I., & Mechoso, C. R. ( 2016 ). The teleconnection of the tropical Atlantic to Indoâ Pacific sea surface temperatures on interâ annual to centennial time scales: A review of recent findings. Atmosphere, 7, 29. https://doi.org/10.3390/atmos7020029
dc.identifier.citedreferenceLandry, J. S., Partanen, A. I., & Matthews, H. D. ( 2017 ). Carbon cycle and climate effects of forcing from fireâ emitted aerosols. Environmental Research Letters, 12 ( 2 ), 25,002. https://doi.org/10.1088/1748-9326/aa51de
dc.identifier.citedreferenceLee, K., & Chung, C. E. ( 2013 ). Observationallyâ constrained estimates of global fineâ mode AOD. Atmospheric Chemistry and Physics, 13 ( 5 ), 2907 â 2921. https://doi.org/10.5194/acp-13-2907-2013
dc.identifier.citedreferenceLee, H. T., Gruber, A., Ellingson, R. G., & Laszlo, I. ( 2007 ). Development of the HIRS Outgoing Longwave Radiation Climate Dataset. Journal of Atmospheric and Oceanic Technology, 24 ( 12 ), 2029 â 2047. https://doi.org/10.1175/2007JTECHA989.1
dc.identifier.citedreferenceLewinschal, A., Ekman, A. M. L., Hansson, H. C., Sand, M., Berntsen, T. K., & Langner, J. ( 2019 ). Local and remote temperature response of regional SO 2 emissions. Atmospheric Chemistry and Physics, 19 ( 4 ), 2385 â 2403. https://doi.org/10.5194/acp-19-2385-2019
dc.identifier.citedreferenceLi, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., & Brasseur, G. P. ( 2016 ). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54 ( 4 ), 866 â 929. https://doi.org/10.1002/2015RG000500
dc.identifier.citedreferenceLi, X., Xie, S. P., Gille, S. T., & Yoo, C. ( 2012 ). Atlanticâ induced panâ tropical climate change over the past three decades. Nature Climate Change, 6, 275EP. https://doi.org/10.1038/nclimate2840
dc.identifier.citedreferenceLiepert, B. G., Feichter, J., Lohmann, U., & Roeckner, E. ( 2004 ). Can aerosols spin down the water cycle in a warmer and moister world? Geophysical Research Letters, 31, L06207. https://doi.org/10.1029/2003GL019060
dc.identifier.citedreferenceLiu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R., & Hostetler, C. ( 2009 ). The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. Journal of Atmospheric and Oceanic Technology, 26 ( 7 ), 1198 â 1213. https://doi.org/10.1175/2009JTECHA1229.1
dc.identifier.citedreferenceLou, S., Yang, Y., Wang, H., Lu, J., Smith, S. J., Liu, F., & Rasch, P. J. ( 2019 ). Black carbon increases frequency of extreme ENSO events. Journal of Climate, 32 ( 23 ), 8323 â 8333. https://doi.org/10.1175/JCLI-D-19-0549.1
dc.identifier.citedreferenceLu, Z., Liu, X., Zhang, Z., Zhao, C., Meyer, K., Rajapakshe, C., & Penner, J. E. ( 2018 ). Biomass smoke from southern Africa can significantly enhance the brightness of stratocumulus over the southeastern Atlantic Ocean. Proceedings of the National Academy of Sciences, 115 ( 12 ), 2924 â 2929. https://doi.org/10.1073/pnas.1713703115
dc.identifier.citedreferenceMallet, M., Nabat, P., Zuidema, P., Redemann, J., Sayer, A. M., Stengel, M., & Formenti, P. ( 2019 ). Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLESâ 2016 and LASIC experiments. Atmospheric Chemistry and Physics, 19 ( 7 ), 4963 â 4990. https://doi.org/10.5194/acp-19-4963-2019
dc.identifier.citedreferenceMartínâ Rey, M., Polo, I., Rodríguezâ Fonseca, B., & Kucharski, F. ( 2012 ). Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina, 76 ( S2 ), 105 â 116. https://doi.org/10.3989/scimar.03610.19A
dc.identifier.citedreferenceMcGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F. F., & Chikamoto, Y. ( 2014 ). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888EP. https://doi.org/10.1038/nclimate2330
dc.identifier.citedreferenceMeehl, G. A., Arblaster, J. M., & Collins, W. D. ( 2008 ). Effects of black carbon aerosols on the Indian monsoon. Journal Climate, 21, 2869 â 2882.
dc.identifier.citedreferenceMing, Y., & Ramaswamy, V. ( 2009 ). Nonlinear climate and hydrological responses to aerosol effects. Journal of Climate, 22 ( 6 ), 13,290 â 1339. https://doi.org/10.1175/2008JCLI2362.1
dc.identifier.citedreferenceMing, Y., Ramaswamy, V., & Persad, G. ( 2010 ). Two opposing effects of absorbing aerosols on globalâ mean precipitation. Geophysical Research Letters, 37, L13701. https://doi.org/10.1029/2010GL042895
dc.identifier.citedreferenceMlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. ( 1997 ). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlatedâ k model for the longwave. Journal of Geophysical Research, 102, 16,663 â 16,682. https://doi.org/10.1029/97JD00237
dc.identifier.citedreferenceMorrison, H., & Gettelman, A. ( 2008 ). A new twoâ moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3), Part I: Description and numerical tests. Journal Climate, 21, 3642 â 3659. https://doi.org/10.1175/2008JCLI2105.1
dc.identifier.citedreferenceMyhre, G., & Samset, B. H. ( 2015 ). Standard climate models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry and Physics, 15 ( 5 ), 2883 â 2888. https://doi.org/10.5194/acp-15-2883-2015
dc.identifier.citedreferenceMyhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., & Zhang, H. ( 2013 ). Anthropogenic and natural radiative forcing. In T. F.Stocker, D. Qin, G.â K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
dc.identifier.citedreferenceNeale, R. B., Gettelman, A., & Park, S. ( 2010 ). Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR/TNâ 486+STR, Boulder, CO, 268 pp., National Center for Atmospheric Research.
dc.identifier.citedreferenceNeale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., & Lin, S. J. ( 2010 ). Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR/TNâ ???+STR, Boulder, CO, 194 pp., National Center for Atmospheric Research.
dc.identifier.citedreferencePark, S., & Allen, R. J. ( 2015 ). Understanding influences of convective transport and removal processes on aerosol vertical distribution. Geophysical Research Letters, 42, 10,438 â 10,444. https://doi.org/10.1002/2015GL066175
dc.identifier.citedreferencePark, S., & Bretherton, C. S. ( 2009 ). The University of Washington shallow convection and moist turbulence schemes and their impact of climate simulations with the Community Atmosphere Model. Journal Climate, 22, 3449 â 3469. https://doi.org/10.1175/2008JCLI2557.1
dc.identifier.citedreferencePendergrass, A. G., & Hartmann, D. L. ( 2012 ). Globalâ mean precipitation and black carbon in AR4 simulations. Geophysical Research Letters, 39, L01703. https://doi.org/10.1029/2011GL050067
dc.identifier.citedreferencePeterson, T. C., & Vose, R. S. ( 1997 ). An overview of the global historical climatological network temperature database. Bulletin of the American Meteorological Society, 78, 2837 â 2849.
dc.identifier.citedreferencePistone, K., Redemann, J., Doherty, S., Zuidema, P., Burton, S., Cairns, B., & Xu, F. ( 2019 ). Intercomparison of biomass burning aerosol optical properties from in situ and remoteâ sensing instruments in ORACLESâ 2016. Atmospheric Chemistry and Physics, 19 ( 14 ), 9181 â 9208. https://doi.org/10.5194/acp-19-9181-2019
dc.identifier.citedreferencePodgorny, I. A., Conant, W. C., Ramanathan, V., & Satheesh, S. K. ( 2000 ). Aerosol modulation of atmospheric and solar heating over the tropical Indian Ocean. Tellus, Series B, 52, 947 â 958. https://doi.org/10.3402/tellusb.v52i3.17077
dc.identifier.citedreferencePolo, I., Martinâ Rey, M., Rodriguezâ Fonseca, B., Kucharski, F., & Mechoso, C. R. ( 2015 ). Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dynamics, 44 ( 1 ), 115 â 131. https://doi.org/10.1007/s00382-014-2354-7
dc.identifier.citedreferencePolson, D., Bollasina, M., Hegerl, G. C., & Wilcox, L. J. ( 2014 ). Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophysical Research Letters, 41, 6023 â 6029. https://doi.org/10.1002/2014GL060811
dc.identifier.citedreferencePotter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., & Klooster, S. A. ( 1993 ). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7 ( 4 ), 811 â 841. https://doi.org/10.1029/93GB02725
dc.identifier.citedreferenceRamanathan, V., & Carmichael, G. ( 2008 ). Global and regional climate changes due to black carbon. Nature Geoscience, 1, 221 â 227.
dc.identifier.citedreferenceRamanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., & Sikka, D. R. ( 2005 ). Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences, 102, 5326 â 5333.
dc.identifier.citedreferenceRamanathan, V., Crutzen, P. J., Lelieveld, J., & Mitra, A. P. ( 2001 ). Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indoâ Asian haze. Journal of Geophysical Research, 106 ( D22 ), 28,371 â 28,398.
dc.identifier.citedreferenceRandles, C. A., Colarco, P. R., & Silva, A. ( 2013 ). Direct and semiâ direct aerosol effects in the NASA GEOSâ 5 AGCM: Aerosolâ climate interactions due to prognostic versus prescribed aerosols. Journal of Geophysical Research: Atmospheres, 118, 149 â 169. https://doi.org/10.1029/2012JD018388
dc.identifier.citedreferenceRandles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., & Flynn, C. J. ( 2017 ). The MERRAâ 2 Aerosol Reanalysis, 1980 Onward. Part I: System description and data assimilation evaluation. Journal of Climate, 30 ( 17 ), 6823 â 6850. https://doi.org/10.1175/JCLI-D-16-0609.1
dc.identifier.citedreferenceRandles, C. A., & Ramaswamy, V. ( 2010 ). Direct and semiâ direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: A Geophysical Fluid Dynamics Laboratory GCM sensitivity study. Atmospheric Chemistry and Physics, 10 ( 20 ), 9819 â 9831. https://doi.org/10.5194/acp-10-9819-2010
dc.identifier.citedreferenceRasch, P. J., & Kristjánsson, J. E. ( 1998 ). A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. Journal Climate, 11, 1587 â 1614.
dc.identifier.citedreferenceRodríguezâ Fonseca, B., Polo, I., Garcíaâ Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., & Kucharski, F. ( 2009 ). Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36, L20705. https://doi.org/10.1029/2009GL040048
dc.identifier.citedreferenceRotstayn, L. D., Collier, M. A., & Luo, J. J. ( 2015 ). Effects of declining aerosols on projections of zonally averaged tropical precipitation. Environmental Research Letters, 10 ( 5 ), 44018. https://doi.org/10.1088/1748-9326/10/4/044018
dc.identifier.citedreferenceRotstayn, L. D., Collier, M. A., Shindell, D. T., & Boucher, O. ( 2015 ). Why does aerosol forcing control historical globalâ mean surface temperature change in CMIP5 models? Journal of Climate, 28 ( 17 ), 6608 â 6625. https://doi.org/10.1175/JCLI-D-14-00712.1
dc.identifier.citedreferenceSakaeda, N., Wood, R., & Rasch, P. J. ( 2011 ). Direct and semidirect aerosol effects of southern African biomass burning aerosol. Journal of Geophysical Research, 116, D12205. https://doi.org/10.1029/2010JD015540
dc.identifier.citedreferenceSamset, B. H., & Myhre, G. ( 2015 ). Climate response to externally mixed black carbon as a function of altitude. Journal of Geophysical Research: Atmospheres, 120, 2913 â 2927. https://doi.org/10.1002/2014JD022849
dc.identifier.citedreferenceSamset, B. H., Myhre, G., Forster, P. M., Hodnebrog, Ã ., Andrews, T., Faluvegi, G., & Voulgarakis, A. ( 2016 ). Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophysical Research Letters, 43, 2782 â 2791. https://doi.org/10.1002/2016GL068064
dc.identifier.citedreferenceShen, Z., & Ming, Y. ( 2018 ). The influence of aerosol absorption on the extratropical circulation. Journal of Climate, 31 ( 15 ), 5961 â 5975. https://doi.org/10.1175/JCLI-D-17-0839.1
dc.identifier.citedreferenceShindell, D. T., & Faluvegi, G. ( 2009 ). Climate response to regional radiative forcing during the twentieth century. Nature Geoscience, 2, 294 â 300. https://doi.org/10.1038/NGEO473
dc.identifier.citedreferenceShindell, D. T., Lamarque, J. F., Schulz, M., Flanner, M., Jiao, C., Chin, M., & Lo, F. ( 2013 ). Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 13 ( 6 ), 2939 â 2974. https://doi.org/10.5194/acp-13-2939-2013
dc.identifier.citedreferenceShindell, D. T., Voulgarakis, A., Faluvegi, G., & Milly, G. ( 2012 ). Precipitation response to regional radiative forcing. Atmospheric Chemistry and Physics, 12 ( 15 ), 6969 â 6982. https://doi.org/10.5194/acp-12-6969-2012
dc.identifier.citedreferenceSmith, S., Andres, R., Conception, E., & Lurz, J. ( 2004 ). Historical sulfur dioxide emissions 1850â 2000: Methods and results. PNNLâ 14537, Joint Global Change Research Institute.
dc.identifier.citedreferenceSmith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., & Yeager, S. ( 2010 ). The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). LAURâ 10â 01853, Los Alamos National Laboratory.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.