Show simple item record

Direct comparison of Eulerian–Eulerian and Eulerian–Lagrangian simulations for particle‐laden vertical channel flow

dc.contributor.authorBaker, Michael C.
dc.contributor.authorKong, Bo
dc.contributor.authorCapecelatro, Jesse
dc.contributor.authorDesjardins, Olivier
dc.contributor.authorFox, Rodney O.
dc.date.accessioned2020-07-02T20:34:06Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-07-02T20:34:06Z
dc.date.issued2020-07
dc.identifier.citationBaker, Michael C.; Kong, Bo; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O. (2020). "Direct comparison of Eulerian–Eulerian and Eulerian–Lagrangian simulations for particle‐laden vertical channel flow." AIChE Journal 66(7): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/155968
dc.description.abstractParticle‐laden flows in a vertical channel were simulated using an Eulerian–Eulerian, Anisotropic Gaussian (EE‐AG) model. Two sets of cases varying the overall mass loading were done using particle sizes corresponding to either a large or small Stokes number. Primary and turbulent statistics were extracted from these results and compared with counterparts collected from Eulerian–Lagrangian (EL) simulations. The statistics collected from the small Stokes number particle cases correspond well between the two models, with the EE‐AG model replicating the transition observed using the EL model from shear‐induced turbulence to relaminarization to cluster‐induced turbulence as the mass loading increased. The EE‐AG model was able to capture the behavior of the EL simulations only at the largest particle concentrations using the large Stokes particles. This is due to the limitations involved with employing a particle‐phase Eulerian model (as opposed to a Lagrangian representation) for a spatially intermittent system that has a low particle number concentration.
dc.publisherJohn Wiley & Sons, Inc.
dc.titleDirect comparison of Eulerian–Eulerian and Eulerian–Lagrangian simulations for particle‐laden vertical channel flow
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155968/1/aic16230_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/155968/2/aic16230.pdf
dc.identifier.doi10.1002/aic.16230
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceGibilaro LG, Gallucci K, Di Felice R, Pagliai P. On the apparent viscosity of a fluidized bed. Chem Eng Sci. 2007; 62 ( 1–2 ): 294 ‐ 300.
dc.identifier.citedreferenceCapecelatro J, Pepiot P, Desjardins O. Numerical characterization and modeling of particle clustering in wall‐bounded vertical risers. Chem Eng J. 2014; 245: 295 ‐ 310.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. On fluid–particle dynamics in fully developed cluster‐induced turbulence. J Fluid Mech. 2015; 780: 578 ‐ 635.
dc.identifier.citedreferenceDrew DA. Mathematical modeling of two‐phase flow. Annu Rev Fluid Mech. 1983; 15: 261 ‐ 291.
dc.identifier.citedreferenceDesjardins O, Fox RO, Villedieu P. A quadrature‐based moment method for dilute fluid–particle flows. J Comput Phys. 2008; 227 ( 4 ): 2514 ‐ 2539.
dc.identifier.citedreferenceAgrawal K, Loezos PN, Syamlal M, Sundaresan S. The role of meso‐scale structures in rapid gas–solid flows. J Fluid Mech. 2001; 445: 151 ‐ 181.
dc.identifier.citedreferenceKim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech. 1987; 177: 133 ‐ 166.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. Strongly coupled fluid–particle flows in vertical channels. i. Reynolds‐averaged two‐phase turbulence statistics. Phys Fluids. 2016; 28 ( 3 ): 033306.1 ‐ 033306.22.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. Strongly coupled fluid–particle flows in vertical channels. II. Turbulence modeling. Phys Fluids. 2016; 28 ( 3 ): 033307.1 ‐ 033307.24.
dc.identifier.citedreferenceWeller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum mechanics using object‐oriented techniques. Comput Phys. 1998; 12 ( 6 ): 620 ‐ 631.
dc.identifier.citedreferenceDesjardins O, Blanquart G, Balarac G, Pitsch H. High order conservative finite difference scheme for variable density low Mach number turbulent flows. J Comput Phys. 2008; 227 ( 15 ): 7125 ‐ 7159.
dc.identifier.citedreferenceAnderson TB, Jackson R. Fluid mechanical description of fluidized beds: equations of motion. Ind Eng Chem Fundam. 1967; 6 ( 4 ): 527 ‐ 539.
dc.identifier.citedreferencePatel RG, Desjardins O, Kong B, Capecelatro J, Fox RO. Verification of Eulerian–Eulerian and Eulerian–Lagrangian simulations for turbulent fluid–particle flows. AIChE J. 2017; 63 ( 12 ): 5396 ‐ 5412.
dc.identifier.citedreferencePassalacqua A, Fox RO, Garg R, Subramaniam S. A fully coupled quadrature‐based moment method for dilute to moderately dilute fluid–particle flows. Chem Eng Sci. 2010; 65 ( 7 ): 2267 ‐ 2283.
dc.identifier.citedreferenceCundall PA, Strack ODL. A discrete numerical model for granular assemblies. Geotechnique. 1979; 29 ( 1 ): 47 ‐ 65.
dc.identifier.citedreferenceMarchisio DL, Fox RO. Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge Series in Chemical Engineering. New York: Cambridge University Press; 2013.
dc.identifier.citedreferenceBhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one‐component systems. Phys Rev. 1954; 94 ( 3 ): 511 ‐ 525.
dc.identifier.citedreferenceKong B, Fox RO. A solution algorithm for fluid–particle flows across all flow regimes. J Comput Phys. 2017; 344: 575 ‐ 594.
dc.identifier.citedreferencePatel RG, Desjardins O, Fox RO. Three‐dimensional conditional hyperbolic quadrature method of moments. J Comput Phys X. 2019; 1: 100006.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. Numerical study of collisional particle dynamics in cluster‐induced turbulence. J Fluid Mech. 2014; 747: R21 ‐ R213.
dc.identifier.citedreferencePan T, Joseph DD, Bai R, Glowinski R, Sarin V. Fluidization of 1204 spheres: simulation and experiment. J Fluid Mech. 2002; 451: 169 ‐ 191.
dc.identifier.citedreferenceFeng Z, Musong SG. Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed. Powder Technol. 2014; 262: 62 ‐ 70.
dc.identifier.citedreferenceCapecelatro J, Desjardins O. An Euler–Lagrange strategy for simulating particle‐laden flows. J Comput Phys. 2013; 238: 1 ‐ 31.
dc.identifier.citedreferenceIgci Y, Sundaresan S. Verification of filtered two‐fluid models for gas‐particle flows in risers. AIChE J. 2011; 57 ( 10 ): 2691 ‐ 2707.
dc.identifier.citedreferenceChen J, Wang S, Sun D, Lu H, Gidaspow D, Yu H. A second‐order moment method applied to gas–solid risers. AIChE J. 2012; 58 ( 12 ): 3653 ‐ 3675.
dc.identifier.citedreferenceHrenya CM, Sinclair JL. Effects of particle‐phase turbulence in gas–solid flows. AIChE J. 1997; 43 ( 4 ): 853 ‐ 869.
dc.identifier.citedreferenceSchneiderbauer S. Validation study on spatially averaged two‐fluid model for gas–solid flows: II. Application to risers and fluidized beds. AIChE J. 2018; 64 ( 5 ): 1606 ‐ 1617.
dc.identifier.citedreferenceFox RO. Large‐eddy‐simulation tools for multiphase flows. Annu Rev Fluid Mech. 2012; 44: 47 ‐ 76.
dc.identifier.citedreferencevan der Hoef MA, Ye M, van Sint AM, Andrews AT, Sundaresan S, Kuipers JAM. Multiscale modeling of gas‐fluidized beds. Advances in Chemical Engineering. Vol 31. Burlington, MA: Elsevier; 2006: 65 ‐ 149.
dc.identifier.citedreferenceLevermore CD, Morokoff W. The Gaussian moment closure for gas dynamics. SIAM J Appl Math. 1996; 59: 72 ‐ 96.
dc.identifier.citedreferenceVié A, Doisneau F, Massot M. On the anisotropic Gaussian velocity closure for inertial‐particle laden flows. Commun Comput Phys. 2015; 17 ( 1 ): 1 ‐ 46.
dc.identifier.citedreferenceKong B, Fox RO, Feng H, et al. Euler–Euler anisotropic Gaussian mesoscale simulation of homogeneous cluster‐induced gas–particle turbulence. AIChE J. 2017; 63 ( 7 ): 2630 ‐ 2643.
dc.identifier.citedreferenceFox RO. On multiphase turbulence models for collisional fluid–particle flows. J Fluid Mech. 2014; 742: 368 ‐ 424.
dc.identifier.citedreferenceKasbaoui MH, Koch DL, Desjardins O. Clustering in Euler–Euler and Euler–Lagrange simulations of unbounded homogeneous particle‐laden shear. J Fluid Mech. 2019; 859: 174 ‐ 203.
dc.identifier.citedreferenceCapecelatro J, Desjardins O, Fox RO. On the transition between turbulence regimes in particle‐laden channel flows. J Fluid Mech. 2018; 845: 499 ‐ 519.
dc.identifier.citedreferencePatankar NA, Joseph DD. Modeling and numerical simulation of particulate flows by the eulerian–lagrangian approach. Int J Multiphase Flow. 2001; 27 ( 10 ): 1659 ‐ 1684.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.