Show simple item record

The Impacts of Flood, Drought, and Turbidites on Organic Carbon Burial Over the Past 2,000 years in the Santa Barbara Basin, California

dc.contributor.authorSarno, Caitlyn T.
dc.contributor.authorBenitez‐nelson, Claudia R.
dc.contributor.authorZiolkowski, Lori A.
dc.contributor.authorHendy, Ingrid L.
dc.contributor.authorDavis, Catherine V.
dc.contributor.authorTappa, Eric J.
dc.contributor.authorThunell, Robert C.
dc.date.accessioned2020-08-10T20:55:32Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:55:32Z
dc.date.issued2020-07
dc.identifier.citationSarno, Caitlyn T.; Benitez‐nelson, Claudia R. ; Ziolkowski, Lori A.; Hendy, Ingrid L.; Davis, Catherine V.; Tappa, Eric J.; Thunell, Robert C. (2020). "The Impacts of Flood, Drought, and Turbidites on Organic Carbon Burial Over the Past 2,000 years in the Santa Barbara Basin, California." Paleoceanography and Paleoclimatology 35(7): n/a-n/a.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/156217
dc.description.abstractClimate conditions and instantaneous depositional events can influence the relative contribution of sediments from terrestrial and marine environments and ultimately the quantity and composition of carbon buried in the sediment record. Here, we analyze the elemental, isotopic, and organic geochemical composition of marine sediments to identify terrestrial and marine sources in sediment horizons associated with droughts, turbidites, and floods in the Santa Barbara Basin (SBB), California, during the last 2,000 years. Stable isotopes (δ13C and δ15N) indicate that more terrestrial organic carbon (OC) was deposited during floods relative to background sediment, while bulk C to nitrogen (C/N) ratios remained relatively constant (~10). Long- chain n- alkanes (C27, C29, C31, and C33), characteristic of terrestrial OC, dominated all types of sediment deposition but were 4 times more abundant in flood layers. Marine algae (C15, C17, and C19) and macrophytes (C21 and C23) were also 2 times higher in flood versus background sediments. Turbidites contained twice the terrestrial n- alkanes relative to background sediment. Conversely, drought intervals were only distinguishable from background sediment by their higher proportion of marine algal n- alkanes. Combined, our data indicate that 15% of the total OC buried in SBB over the past 2,000 years was deposited during 11 flood events where the sediment was mostly terrestrially derived, and another 12% of deep sediment OC burial was derived from shelf remobilization during six turbidite events. Relative to twentieth century river runoff, our data suggest that floods result in considerable terrestrial OC burial on the continental margins of California.Key PointsTerrestrial organic carbon is the dominant source of carbon to the SBB with deposition significantly increasing during flood eventsEpisodic flood and turbidite remobilization events were responsible for over 25% of the OC buried in the SBB over the past 2,000 yearsDrought sedimentation had significantly lower sedimentation rates and had an n- alkane composition consistent with increased marine inputs
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherflood
dc.subject.otherturbidite
dc.subject.othercontinental margin
dc.subject.otherterrestrial organic matter
dc.subject.othercarbon burial
dc.titleThe Impacts of Flood, Drought, and Turbidites on Organic Carbon Burial Over the Past 2,000 years in the Santa Barbara Basin, California
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156217/4/palo20901-sup-0002-2020PA003849-fs01.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156217/3/palo20901_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156217/2/palo20901.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156217/1/palo20901-sup-0003-2020PA003849-fs02.pdfen_US
dc.identifier.doi10.1029/2020PA003849
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceSchimmelmann, A., Hendy, I. L., Dunn, L., Pak, D. K., & Lange, C. B. ( 2013 ). Revised - ¼- 2000- year chronostratigraphy of partially varved marine sediment in Santa Barbara Basin, California. GFF, 135 ( 3- 4 ), 258 - 264. https://doi.org/10.1080/11035897.2013.773066
dc.identifier.citedreferenceSchimmelmann, A., Zhao, M., Harvey, C. C., & Lange, C. B. ( 1998 ). A large California flood and correlative global climatic events 400 years ago. Quaternary Research, 49 ( 1 ), 51 - 61. https://doi.org/10.1006/qres.1997.1937
dc.identifier.citedreferenceSchlesinger, M. E., & Jiang, X. ( 1991 ). Climatic responses to increasing greenhouse gases. Eos Transactions American Geophysical Union, 72 ( 53 ), 597 - 593. https://doi.org/10.1029/90EO00417
dc.identifier.citedreferenceSchwarz, J. R., Walker, J. D., & Colwell, R. R. ( 1974 ). Deep- sea bacteria: Growth and utilization of hydrocarbons at ambient and in situ pressure. Applied Microbiology, 28 ( 6 ), 982 - 986. https://doi.org/10.1128/aem.28.6.982-986.1974
dc.identifier.citedreferenceSigman, D. M., Robinson, R., Knapp, A. N., van Geen, A., McCorkle, D. C., Brandes, J. A., & Thunell, R. C. ( 2003 ). Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochemistry, Geophysics, Geosystems, 4 ( 5 ), 1040. https://doi.org/10.1029/2002GC000384
dc.identifier.citedreferenceSmith, S. V., & Hollibaugh, J. T. ( 1993 ). Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics, 31 ( 1 ), 75 - 89. https://doi.org/10.1029/92RG02584
dc.identifier.citedreferenceSo, C. M., & Young, L. Y. ( 1999 ). Isolation and characterization of a sulfate- reducing bacterium that anaerobically degrades alkanes. Applied and Environmental Microbiology, 65 ( 7 ), 2969 - 2976. https://doi.org/10.1128/aem.65.7.2969-2976.1999
dc.identifier.citedreferenceSoutar, A., & Crill, P. A. ( 1977 ). Sedimentation and climatic patterns in the Santa Barbara Basin during the 19th and 20th centuries. Geological Society of America Bulletin, 88 ( 8 ), 1161. https://doi.org/10.1130/0016-7606(1977)88<1161:sacpit>2.0.co;2
dc.identifier.citedreferenceSoutar, A., Kling, S. A., Crill, P. A., Duffrin, E., & Bruland, K. W. ( 1977 ). Monitoring the marine environment through sedimentation. Nature, 266 ( 5598 ), 136 - 139. https://doi.org/10.1038/266136a0
dc.identifier.citedreferenceStallard, R. F. ( 1998 ). Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 12 ( 2 ), 231 - 257. https://doi.org/10.1029/98GB00741
dc.identifier.citedreferenceSweeney, R. E., & Kaplan, I. ( 1980 ). Natural abundances of 15 N as a source indicator for near- shore marine sedimentary and dissolved nitrogen. Marine Chemistry, 9 ( 2 ), 81 - 94. https://doi.org/10.1016/0304-4203(80)90062-6
dc.identifier.citedreferenceTems, C. E., Berelson, W. M., & Prokopenko, M. G. ( 2015 ). Particulate δ 15 N in laminated marine sediments as a proxy for mixing between the California Undercurrent and the California Current: A proof of concept. Geophysical Research Letters, 42, 419 - 427. https://doi.org/10.1002/2014gl061993
dc.identifier.citedreferenceThornton, S. E. ( 1984 ). Basin model for hemipelagic sedimentation in a tectonically active continental margin: Santa Barbara Basin, California Continental Borderland. Geological Society, London, Special Publications, 15, 377 - 394. https://doi.org/10.1144/GSL.SP.1984.015.01.25
dc.identifier.citedreferenceThornton, S. E. ( 1986 ). Origin of mass flow sedimentary structures in hemipelagic basin deposits: Santa Barbara Basin, California Borderland. Geo- Marine Letters, 6 ( 1 ), 15 - 19. https://doi.org/10.1007/bf02311691
dc.identifier.citedreferenceThunell, R. C. ( 1998 ). Seasonal and annual variability in particle fluxes in the Gulf of California: A response to climate forcing. Deep Sea Research Part I: Oceanographic Research Papers, 45 ( 12 ), 2059 - 2083. https://doi.org/10.1016/S0967-0637(98)00053-3
dc.identifier.citedreferenceThunell, R. C. ( 2003 ). Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochemistry, Geophysics, Geosystems, 4 ( 5 ), 1040. https://doi.org/10.1029/2002gc000384
dc.identifier.citedreferenceThunell, R. C., Tappa, E., & Anderson, D. M. ( 1995 ). Sediment fluxes and varve formation in Santa Barbara Basin, offshore California. Geology, 23 ( 12 ), 1083. https://doi.org/10.1130/0091-7613(1995)023<1083:SFAVFI>2.3.CO;2
dc.identifier.citedreferenceVoss, M., Dippner, J. W., & Montoya, J. P. ( 2001 ). Nitrogen isotope patterns in the oxygen- deficient waters of the Eastern Tropical North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 48 ( 8 ), 1905 - 1921. https://doi.org/10.1016/S0967-0637(00)00110-2
dc.identifier.citedreferenceWakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L., & Hernes, P. J. ( 1997 ). Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 44 ( 9- 10 ), 2131 - 2162. https://doi.org/10.1016/s0967-0645(97)00035-0
dc.identifier.citedreferenceWaliser, D., & Guan, B. ( 2017 ). Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10 ( 3 ), 179 - 183. https://doi.org/10.1038/ngeo2894
dc.identifier.citedreferenceWang, B., Yang, J., Jiang, H., Zhang, G., & Dong, H. ( 2019 ). Chemical composition of n - alkanes and microbially mediated n - alkane degradation potential differ in the sediments of Qinghai- Tibetan lakes with different salinity. Chemical Geology, 524, 37 - 48. https://doi.org/10.1016/j.chemgeo.2019.05.038
dc.identifier.citedreferenceWang, Y., Hendy, I. L., & Thunell, R. ( 2019 ). Local and remote forcing of denitrification in the Northeast Pacific for the last 2000 years. Paleoceanography and Paleoclimatology, 34. https://doi.org/10.1029/2019pa003577
dc.identifier.citedreferenceWarrick, J. A., DiGiacomo, P. M., Welsberg, S. B., Nezlin, N. P., Mengel, M., Jones, B. H., Ohlmann, J. C., Washburn, L., Terrill, E. J., & Farnsworth, K. L. ( 2007 ). River plume patterns and dynamics within the Southern California Bight. Continental Shelf Research, 27 ( 19 ), 2427 - 2448. https://doi.org/10.1016/j.csr.2007.06.015
dc.identifier.citedreferenceWarrick, J. A., & Farnsworth, K. L. ( 2009 ). Sources of sediment to the coastal waters of the Southern California Bight. In H. J. Lee & W. R. Normark (Eds.), Earth science in the urban ocean: The Southern California Continental Borderland, Geological Society of America Special Paper (Vol. 454, pp. 39 - 52 ). Geological Society of America. https://doi.org/10.1130/2009.2454(2.2)
dc.identifier.citedreferenceWarrick, J. A., Washburn, L., Brzezinski, M. A., & Siegel, D. A. ( 2005 ). Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River. Estuarine, Coastal and Shelf Science, 62 ( 4 ), 559 - 574. https://doi.org/10.1016/j.ecss.2004.09.033
dc.identifier.citedreferenceWhyte, L. G., Hawari, J., Zhou, E., Luc, B., Inniss, W. E., & Greer, C. W. ( 1998 ). Biodegradation of variable- chain- length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Applied and Environmental Microbiology, 64 ( 7 ), 2578 - 2584. https://doi.org/10.1128/aem.64.7.2578-2584.1998
dc.identifier.citedreferenceWroblewski, J. S., & Richman, J. G. ( 1987 ). The non- linear response of plankton to wind mixing events- Implications for survival of larval northern anchovy. Journal of Plankton Research, 9 ( 1 ), 103 - 123. https://doi.org/10.1093/plankt/9.1.103
dc.identifier.citedreferenceYoung, L. Y., & Phelps, C. D. ( 2005 ). Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation. Environmental Health Perspectives, 113 ( 1 ), 62 - 67. https://doi.org/10.1289/ehp.6940
dc.identifier.citedreferenceAltabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. ( 2020 ). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Research Part I: Oceanographic Research; Papers, 46 ( 4 ), 655 - 679. https://doi.org/10.1016/s0967-0637(98)00084-3
dc.identifier.citedreferenceBao, H., Lee, T., Huang, J., Feng, X., Dai, M., & Kao, S. ( 2015 ). Importance of Oceanian small mountainous rivers (SMRs) in global land- to- ocean output of lignin and modern biospheric carbon. Scientific Reports, 5 ( 1 ), 16217. https://doi.org/10.1038/srep16217
dc.identifier.citedreferenceBarron, J. A., Bukry, D., & Field, D. ( 2010 ). Santa Barbara Basin diatom and silicoflagellate response to global climate anomalies during the past 2200 years. Quaternary International, 215 ( 1- 2 ), 34 - 44. https://doi.org/10.1016/j.quaint.2008.08.007
dc.identifier.citedreferenceBarron, J. A., Bukry, D., & Hendy, I. L. ( 2015 ). High- resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901- 02KC. Quaternary International, 387, 13 - 22. https://doi.org/10.1016/j.quaint.2014.04.020
dc.identifier.citedreferenceBerner, R. A. ( 1982 ). Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. American Journal of Science, 282 ( 4 ), 451 - 473. https://doi.org/10.2475/ajs.282.4.451
dc.identifier.citedreferenceBianchi, T. S. ( 2011 ). The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proceedings of the National Academy of Sciences, 108 ( 49 ), 19473 - 19481. https://doi.org/10.1073/pnas.1017982108
dc.identifier.citedreferenceBianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., & Galy, V. ( 2018 ). Centers of organic carbon burial and oxidation at the land- ocean interface. Organic Geochemistry, 115, 138 - 155. https://doi.org/10.1016/j.orggeochem.2017.09.008
dc.identifier.citedreferenceBihari, Z., Szabó, Z., Szvetnik, A., Balázs, M., Bartos, P., Tolmacsov, P., Zombori, Z., & Kiss, I. ( 2010 ). Characterization of a novel long- chain n - alkane- degrading strain, Dietzia sp. E1. Zeitschrift Für Naturforschung C, 65 ( 11- 12 ), 693 - 700. https://doi.org/10.1515/znc-2010-11-1210
dc.identifier.citedreferenceBlaauw, M., & Christen, J. A. ( 2011 ). Flexible paleoclimate age- depth models using an autoregressive gamma process. Bayesian Analysis, 6 ( 3 ), 457 - 474. https://doi.org/10.1214/11-BA618 https://projecteuclid.org/euclid.ba/1339616472
dc.identifier.citedreferenceBlair, N. E., Leithold, E. L., & Aller, R. C. ( 2004 ). From bedrock to burial: The evolution of particulate organic carbon across coupled watershed- continental margin systems. Marine Chemistry, 92 ( 1- 4 ), 141 - 156. https://doi.org/10.1016/j.marchem.2004.06.023
dc.identifier.citedreferenceBlumer, M., & Clark, R. C. Jr. ( 1967 ). Distribution of n - paraffins in marine organisms and sediment. Limnology and Oceanography, 12 ( 1 ), 79 - 87. https://doi.org/10.4319/lo.1967.12.1.0079
dc.identifier.citedreferenceBograd, S. J., & Lynn, R. J. ( 2001 ). Physical- biological coupling in the California Current during the 1997- 99 El Niño- La Niña Cycle. Geophysical Research Letters, 28 ( 2 ), 275 - 278. https://doi.org/10.1029/2000gl012047
dc.identifier.citedreferenceBograd, S. J., Schwing, F. B., Castro, C. G., & Timothy, D. A. ( 2002 ). Bottom water renewal in the Santa Barbara Basin. Journal of Geophysical Research, 107 ( C12 ). https://doi.org/10.1029/2001jc001291
dc.identifier.citedreferenceBrandes, J. A., Devol Allan, H., Yoshinari, T., Jayakumar, D. A., & Naqvi, S. W. A. ( 2003 ). Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnology and Oceanography, 43 ( 7 ), 1680 - 1689. https://doi.org/10.4319/lo.1998.43.7.1680
dc.identifier.citedreferenceBray, E., & Evans, E. ( 1961 ). Distribution of n - paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22 ( 1 ), 2 - 15. https://doi.org/10.1016/0016-7037(61)90069-2
dc.identifier.citedreferenceBray, N. A., Keyes, A., & Morawitz, W. M. ( 1999 ). The California Current system in the Southern California Bight and the Santa Barbara Channel. Journal of Geophysical Research, 104 ( C4 ), 7695 - 7714. https://doi.org/10.1029/1998jc900038
dc.identifier.citedreferenceBurdige, D. J. ( 2005 ). Burial of terrestrial organic matter in marine sediments: A re- assessment. Global Biogeochemical Cycles, 19, Gb4011. https://doi.org/10.1029/2004gb002368
dc.identifier.citedreferenceBurdige, D. J. ( 2006 ). Geochemistry of marine sediments. Princeton: Princeton University Press.
dc.identifier.citedreferenceCaldwell, M. E., Garrett, R. M., Prince, R. C., & Suflita, J. M. ( 1998 ). Anaerobic biodegradation of long- chain n - alkanes under sulfate- reducing conditions. Environmental Science & Technology, 32 ( 14 ), 2191 - 2195. https://doi.org/10.1021/es9801083
dc.identifier.citedreferenceCanuel, E. A., & Martens, C. S. ( 1996 ). Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment- water interface. Geochimica et Cosmochimica Acta, 60 ( 10 ), 1793 - 1806. https://doi.org/10.1016/0016-7037(96)00045-2
dc.identifier.citedreferenceCavanaugh, K., Siegel, D., Reed, D., & Dennison, P. ( 2011 ). Environmental controls of giant- kelp biomass in the Santa Barbara Channel, California. Marine Ecology Progress Series, 429, 1 - 17. https://doi.org/10.3354/meps09141
dc.identifier.citedreferenceChavez, F. P. ( 1996 ). Forcing and biological impact of onset of the 1992 El Niño in central California. Geophysical Research Letters, 23 ( 3 ), 265 - 268. https://doi.org/10.1029/96GL00017
dc.identifier.citedreferenceCheckley, D. M., & Barth, J. A. ( 2009 ). Patterns and processes in the California Current System. Progress in Oceanography, 83 ( 1- 4 ), 49 - 64. https://doi.org/10.1016/j.pocean.2009.07.028
dc.identifier.citedreferenceCline, J., & Kaplan, I. ( 1975 ). Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Marine Chemistry, 3 ( 4 ), 271 - 299. https://doi.org/10.1016/0304-4203(75)90009-2
dc.identifier.citedreferenceCrisp, P., Brenner, S., Venkatesan, M., Ruth, E., & Kaplan, I. ( 1979 ). Organic chemical characterization of sediment- trap particulates from San Nicolas, Santa Barbara, Santa Monica and San Pedro Basins, California. Geochimica et Cosmochimica Acta, 43 ( 11 ), 1791 - 1801. https://doi.org/10.1016/0016-7037(79)90027-9
dc.identifier.citedreferenceDavis, C. V., Ontiveros- Cuadras, J. F., Benitez- Nelson, C., Schmittner, A., Osborne, E., Tappa, E., & Thunell, R. C. ( 2019 ). Ongoing increase in Eastern Tropical North Pacific denitrification as interpreted through sedimentary δ 15 N from Santa Barbara Basin. Paleoceanography and Paleoclimatology, 34. https://doi.org/10.1029/2019pa003578
dc.identifier.citedreferenceDettinger, M. D., & Ingram, B. L. ( 2013 ). The coming megafloods. Scientific American, 308 ( 1 ), 64 - 71. https://doi.org/10.1038/scientificamerican0113-64
dc.identifier.citedreferenceDettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. ( 2011 ). Atmospheric rivers, floods and the water resources of California. Water, 3 ( 2 ), 445 - 478. https://doi.org/10.3390/w3020445
dc.identifier.citedreferenceDeuser, W. G., Brewer, P. G., Jickells, T. D., & Commeau, R. F. ( 1983 ). Biological control of the removal of abiogenic particles from the surface ocean. Science, 219 ( 4583 ), 388 - 391. https://doi.org/10.1126/science.219.4583.388
dc.identifier.citedreferenceDeutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., Crusius, J., Ito, T., Baumgartner, T., Ferreira, V., Mey, J., & Geen, A. V. ( 2014 ). Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345 ( 6197 ), 665 - 668. https://doi.org/10.1126/science.1252332
dc.identifier.citedreferenceDorman, C. E., & Winant, C. D. ( 2000 ). The structure and variability of the marine atmosphere around the Santa Barbara Channel. Monthly Weather Review, 128 ( 2 ), 261. https://doi.org/10.1175/1520-0493(2000)1282.0.co;2
dc.identifier.citedreferenceDu, X., Hendy, I., & Schimmelmann, A. ( 2018 ). A 9000- year flood history for Southern California: A revised stratigraphy of varved sediments in Santa Barbara Basin. Marine Geology, 397, 29 - 42. https://doi.org/10.1016/j.margeo.2017.11.014
dc.identifier.citedreferenceEASAC. ( 2018 ). Extreme weather events in Europe (pp. 1 - 8 ). European Academies Science Advisory Council. Retrieved from https://easac.eu/fileadmin/PDF_s/reports_statements/Extreme_Weather/EASAC_Statement_Extreme_Weather_Events_March_2018_FINAL.pdf
dc.identifier.citedreferenceEglinton, G., Logan, G., Ambler, R., Boon, J., & Perizonius, W. ( 1991 ). Molecular preservation [and discussion]. Philosophical Transactions: Biological Sciences, 333 ( 1268 ), 315 - 328. https://doi.org/10.1098/rstb.1991.0081
dc.identifier.citedreferenceEmery, K., & Hülsemann, J. ( 1962 ). The relationships of sediments, life and water in a marine basin. Deep Sea Research, 8 ( 3- 4 ), 165 - IN2. https://doi.org/10.1016/0146-6313(61)90019-3
dc.identifier.citedreferenceEmmer, E., & Thunell, R. C. ( 2000 ). Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years. Paleoceanography, 15 ( 4 ), 377 - 387. https://doi.org/10.1029/1999pa000417
dc.identifier.citedreferenceFicken, K., Li, B., Swain, D., & Eglinton, G. ( 2000 ). An n - alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31 ( 7- 8 ), 745 - 749. https://doi.org/10.1016/s0146-6380(00)00081-4
dc.identifier.citedreferenceGordon, E. S., & Goñi, M. A. ( 2003 ). Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta, 67 ( 13 ), 2359 - 2375. https://doi.org/10.1016/s0016-7037(02)01412-6
dc.identifier.citedreferenceGraham, N. E., Hughes, M. K., Ammann, C. M., Cobb, K. M., Hoerling, M. P., Kennett, D. J., Kennett, J. P., Rein, B., Stott, L., Wigand, P. E., & Xu, T. ( 2007 ). Tropical Pacific- Mid- latitude teleconnections in medieval times. Climatic Change, 83 ( 1- 2 ), 241 - 285. https://doi.org/10.1007/s10584-007-9239-2
dc.identifier.citedreferenceGrimalt, J., Albaiges, J., Al- Saad, H. T., & Douabul, A. A. ( 1985 ). n - Alkane distributions in surface sediments from the Arabian Gulf. Naturwissenschaften, 72 ( 1 ), 35 - 37. https://doi.org/10.1007/bf00405327
dc.identifier.citedreferenceHatten, J. A., Goñi, M. A., & Wheatcroft, R. A. ( 2010 ). Chemical characteristics of particulate organic matter from a small, mountainous river system in the Oregon Coast Range, USA. Biogeochemistry, 107 ( 1- 3 ), 43 - 66. https://doi.org/10.1007/s10533-010-9529-z
dc.identifier.citedreferenceHedges, J., Clark, W., Quay, P., Richey, J., Devol, A., & Santos, U. de M. ( 1986 ). Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography, 31 ( 4 ), 717 - 738. https://doi.org/10.4319/lo.1986.31.4.0717
dc.identifier.citedreferenceHedges, J. I., & Keil, R. G. ( 1995 ). Sedimentary OM preservation: An assessment and speculative synthesis. Marine Chemistry, 49 ( 2- 3 ), 81 - 115. https://doi.org/10.1016/0304-4203(95)00008-f
dc.identifier.citedreferenceHendy, I. L., Dunn, L., Schimmelmann, A., & Pak, D. K. ( 2013 ). Resolving varve and radiocarbon chronology differences in the Santa Barbara basin sedimentary record, California. Quaternary International, 387, 136 - 168. https://doi.org/10.1016/j.quaint.2015.01.142
dc.identifier.citedreferenceHendy, I. L., Napier, T. J., & Schimmelmann, A. ( 2015 ). From extreme rainfall to drought: 250 years of annually resolved sediment deposition in Santa Barbara Basin, California. Quaternary International, 387, 3 - 12. https://doi.org/10.1016/j.quaint.2015.01.026
dc.identifier.citedreferenceHendy, I. L., Pedersen, T. F., Kennett, J. P., & Tada, R. ( 2004 ). Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr. Paleoceanography, 19 ( 3 ). https://doi.org/10.1029/2003pa000965
dc.identifier.citedreferenceHeusser, L. E., Hendy, I. L., & Barron, J. A. ( 2015 ). Vegetation response to southern California drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800- 1600). Quaternary International, 387, 23 - 35. https://doi.org/10.1016/j.quaint.2014.09.032
dc.identifier.citedreferenceHilton, R. G., Galy, A., Hovius, N., Chen, M.- C., Horng, M.- J., & Chen, H. ( 2008 ). Tropical- cyclone- driven erosion of the terrestrial biosphere from mountains. Nature Geoscience, 1 ( 11 ), 759 - 762. https://doi.org/10.1038/ngeo333
dc.identifier.citedreferenceHülsemann, J., & Emery, K. O. ( 1961 ). Stratification in recent sediments of Santa Barbara Basin as controlled by organisms and water character. The Journal of Geology, 69 ( 3 ), 279 - 290. https://doi.org/10.1086/626742
dc.identifier.citedreferenceKandasamy, S., & Nath, B. N. ( 2016 ). Perspectives on the terrestrial organic matter transport and burial along the land- deep sea continuum: Caveats in our understanding of biogeochemical processes and future needs. Frontiers in Marine Science, 3. https://doi.org/10.3389/fmars.2016.00259
dc.identifier.citedreferenceKeil, R. G., Montluçon, D. B., Prahl, F. G., & Hedges, J. I. ( 1994 ). Sorptive preservation of labile organic matter in marine sediments. Nature, 370 ( 6490 ), 549 - 552. https://doi.org/10.1038/370549a0
dc.identifier.citedreferenceKuhn, T. K., Krull, E. S., Bowater, A., Grice, K., & Gleixner, G. ( 2010 ). The occurrence of short chain n - alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry, 41 ( 2 ), 88 - 95. https://doi.org/10.1016/j.orggeochem.2009.08.003
dc.identifier.citedreferenceLamontagne, M. G., Leifer, I., Bergmann, S., Werfhorst, L. C. V. D., & Holden, P. A. ( 2004 ). Bacterial diversity in marine hydrocarbon seep sediments. Environmental Microbiology, 6 ( 8 ), 799 - 808. https://doi.org/10.1111/j.1462-2920.2004.00613.x
dc.identifier.citedreferenceLange, C. B., Weinheimer, A. L., Reid, F. M., Tappa, E., & Thunell, R. C. ( 2000 ). Response of siliceous microplankton from the Santa Barbara Basin to the 1997- 98 El Niño event. California Cooperative Oceanic Fisheries Reports, 41, 186 - 193.
dc.identifier.citedreferenceLavers, D. A., & Villarini, G. ( 2015 ). The contribution of atmospheric rivers to precipitation in Europe and the United States. Journal of Hydrology, 522, 382 - 390. https://doi.org/10.1016/j.jhydrol.2014.12.010
dc.identifier.citedreferenceLi, C., Sessions, A. L., Kinnaman, F. S., & Valentine, D. L. ( 2009 ). Hydrogen- isotopic variability in lipids from Santa Barbara Basin sediments. Geochimica et Cosmochimica Acta, 73 ( 16 ), 4803 - 4823. https://doi.org/10.1016/j.gca.2009.05.056
dc.identifier.citedreferenceLi, G., Li, L., Tarozo, R., Longo, W. M., Wang, K. J., Dong, H., & Huang, Y. ( 2018 ). Microbial production of long- chain n - alkanes: Implication for interpreting sedimentary leaf wax signals. Organic Geochemistry, 115, 24 - 31. https://doi.org/10.1016/j.orggeochem.2017.10.005
dc.identifier.citedreferenceLichtfouse, Ã ., Derenne, S., Mariotti, A., & Largeau, C. ( 1994 ). Possible algal origin of long chain odd n - alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Organic Geochemistry, 22 ( 6 ), 1023 - 1027. https://doi.org/10.1016/0146-6380(94)90035-3
dc.identifier.citedreferenceLiu, H., Xu, J., Liang, R., & Liu, J. ( 2014 ). Characterization of the medium- and long- chain n - alkanes degrading Pseudomonas aeruginosa strain SJTD- 1 and its alkane hydroxylase genes. PLoS ONE, 9 ( 8 ), e105506. https://doi.org/10.1371/journal.pone.0105506
dc.identifier.citedreferenceLofthus, S., Netzer, R., Lewin, A. S., Heggeset, T. M. B., Haugen, T., & Brakstad, O. G. ( 2018 ). Biodegradation of n - alkanes on oil- seawater interfaces at different temperatures and microbial communities associated with the degradation. Biodegradation, 29 ( 2 ), 141 - 157. https://doi.org/10.1007/s10532-018-9819-z
dc.identifier.citedreferenceMartin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. ( 1987 ). VERTEX: Carbon cycling in the northeast Pacific. Deep Sea Research Part B. Oceanographic Literature Review, 34 ( 9 ), 753. https://doi.org/10.1016/0198-0254(87)90148-8
dc.identifier.citedreferenceMasiello, C. A., & Druffel, E. R. ( 2001 ). Carbon isotope geochemistry of the Santa Clara River. Global Biogeochemical Cycles, 15 ( 2 ), 407 - 416. https://doi.org/10.1029/2000GB001290
dc.identifier.citedreferenceMeyers, P., Leenheer, M., Eadie, B., & Maule, S. ( 1984 ). Organic geochemistry of suspended and settling particulate matter in Lake Michigan. Geochimica et Cosmochimica Acta, 48 ( 3 ), 443 - 452. https://doi.org/10.1016/0016-7037(84)90273-4
dc.identifier.citedreferenceMeyers, P. A. ( 1994 ). Preservation of elemental and isotopic source identification of sedimentary OM. Chemical Geology, 114 ( 3- 4 ), 289 - 302. https://doi.org/10.1016/0009-2541(94)90059-0
dc.identifier.citedreferenceMeyers, P. A. ( 2003 ). Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34 ( 2 ), 261 - 289. https://doi.org/10.1016/s0146-6380(02)00168-7
dc.identifier.citedreferenceMeyers, P. A., & Eadie, B. J. ( 1993 ). Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochemistry, 20 ( 1 ), 47 - 56. https://doi.org/10.1016/0146-6380(93)90080-u
dc.identifier.citedreferenceMeyers, P. A., & Ishiwatari, R. ( 1993 ). Lacustrine organic geochemistry- An overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20 ( 7 ), 867 - 900. https://doi.org/10.1016/0146-6380(93)90100-p
dc.identifier.citedreferenceMuis, S., Haigh, I. D., Guimarães Nobre, G., Aerts, J. C. J. H., & Ward, P. J. ( 2018 ). Influence of El Niño- Southern Oscillation on global coastal flooding. Earth’s Future, 6, 1311 - 1322. https://doi.org/10.1029/2018EF000909
dc.identifier.citedreferenceMulder, T., & Syvitski, J. P. ( 1995 ). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103 ( 3 ), 285 - 299. https://doi.org/10.1086/629747
dc.identifier.citedreferenceMuller- Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., & Walsh, J. J. ( 2005 ). The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32, L01602. https://doi.org/10.1029/2004GL021346
dc.identifier.citedreferenceNapier, T. J., Hendy, I. L., Fahnestock, M. F., & Bryce, J. G. ( 2019 ). Provenance of detrital sediments in Santa Barbara Basin, California, USA: Changes in source contributions between the Last Glacial Maximum and Holocene. GSA Bulletin, 132 ( 1- 2 ), 65 - 84. https://doi.org/10.1130/B32035.1
dc.identifier.citedreferenceNeiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., & Dettinger, M. D. ( 2008 ). Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology, 9 ( 1 ), 22 - 47. https://doi.org/10.1175/2007jhm855.1
dc.identifier.citedreferenceNewbold, J. D. ( 1991 ). In R. W. Clottu & J. Gillespie (Eds.), The Great California Flood of 1861- 1862 (Vol. 5, pp. 1 - 12 ). Lodi, CA: San Joaquin Historical Society.
dc.identifier.citedreferenceOgston, A., & Sternberg, R. ( 1999 ). Sediment- transport events on the northern California continental shelf. Marine Geology, 154 ( 1- 4 ), 69 - 82. https://doi.org/10.1016/s0025-3227(98)00104-2
dc.identifier.citedreferenceOtero, M. P., & Siegel, D. A. ( 2004 ). Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel. Deep Sea Research Part II: Topical Studies in Oceanography, 51 ( 10- 11 ), 1129 - 1149. https://doi.org/10.1016/j.dsr2.2004.04.004
dc.identifier.citedreferencePearson, A., & Eglinton, T. ( 2000 ). The origin of n - alkanes in Santa Monica Basin surface sediment: A model based on compound- specific Π14 C and δ 13 C data. Organic Geochemistry, 31 ( 11 ), 1103 - 1116. https://doi.org/10.1016/s0146-6380(00)00121-2
dc.identifier.citedreferencePrahl, F., Ertel, J., Goni, M., Sparrow, M., & Eversmeyer, B. ( 1994 ). Terrestrial organic carbon contributions to sediments on the Washington margin. Geochimica et Cosmochimica Acta, 58 ( 14 ), 3035 - 3048. https://doi.org/10.1016/0016-7037(94)90177-5
dc.identifier.citedreferenceRack, F., & Merrill, R. ( 1995 ). Interhole correlations at Site 893, Santa Barbara Basin: Construction of a 16,000- year composite record using magnetic susceptibility and digital color imaging data. J. P. Kennett, J. G. Baldauf, & M. Lyle (Eds.), In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 146 (Pt 2), pp. 169 - 192 ). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.146-2.287.1995
dc.identifier.citedreferenceRansom, B., Shea, K. F., Burkett, P. J., Bennett, R. H., & Baerwald, R. ( 1998 ). Comparison of pelagic and nepheloid layer marine snow: Implications for carbon cycling. Marine Geology, 150, 39 - 50. https://doi.org/10.1016/S0025-3227(98)00052-8
dc.identifier.citedreferenceReimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., & Plicht, J. V. D. ( 2013 ). IntCal13 and Marine13 radiocarbon age calibration curves 0- 50,000 years cal BP. Radiocarbon, 55 ( 4 ), 1869 - 1887. https://doi.org/10.2458/azu_js_rc.55.16947
dc.identifier.citedreferenceReimers, C. E., Lange, C. B., Tabak, M., & Bernhard, J. M. ( 1990 ). Seasonal spillover and varve formation in the Santa Barbara Basin, California. Limnology and Oceanography, 35 ( 7 ), 1577 - 1585. https://doi.org/10.4319/lo.1990.35.7.1577
dc.identifier.citedreferenceRopelewski, C. F., & Halpert, M. S. ( 1989 ). Precipitation patterns associated with the high index phase of the Southern Oscillation. Journal of Climate, 2 ( 3 ), 268 - 284. https://doi.org/10.1175/1520-0442(1989)0022.0.co;2
dc.identifier.citedreferenceRoss, T., Lott, N., McCown, S., & Quinn, D. ( 1998 ). The El Nino winter of ’97- ’98 (pp. 1 - 28 ). Asheville, NC: National Climatic Data Center.
dc.identifier.citedreferenceSarmiento, J. L., & Sundquist, E. T. ( 1992 ). Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 356 ( 6370 ), 589 - 593. https://doi.org/10.1038/356589a0
dc.identifier.citedreferenceScalan, E., & Smith, J. ( 1970 ). An improved measure of the odd- even predominance in the normal alkanes of sediment extracts and petroleum. Geochimica et Cosmochimica Acta, 34 ( 5 ), 611 - 620. https://doi.org/10.1016/0016-7037(70)90019-0
dc.identifier.citedreferenceSchimmelmann, A., Lange, C. B., & Meggers, B. J. ( 2003 ). Palaeoclimatic and archaeological evidence for a 200- yr recurrence of floods and droughts linking California, Mesoamerica and South America over the past 2000 years. The Holocene, 13 ( 5 ), 763 - 778. https://doi.org/10.1191/0959683603hl661rp
dc.identifier.citedreferenceSchimmelmann, A., & Tegner, M. J. ( 1991 ). Historical oceanographic events reflected in 13 C/ 12 C ratio of total organic carbon in laminated Santa Barbara Basin Sediment. Global Biogeochemical Cycles, 5 ( 2 ), 173 - 188. https://doi.org/10.1029/91gb00382
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.