Show simple item record

Cross- Scale Quantification of Storm- Time Dayside Magnetospheric Magnetic Flux Content

dc.contributor.authorAkhavan‐tafti, M.
dc.contributor.authorFontaine, D.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorLe Contel, O.
dc.contributor.authorTurner, D.
dc.date.accessioned2020-11-04T15:58:27Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T15:58:27Z
dc.date.issued2020-10
dc.identifier.citationAkhavan‐tafti, M. ; Fontaine, D.; Slavin, J. A.; Le Contel, O.; Turner, D. (2020). "Cross- Scale Quantification of Storm- Time Dayside Magnetospheric Magnetic Flux Content." Journal of Geophysical Research: Space Physics 125(10): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/163381
dc.description.abstractA clear understanding of storm- time magnetospheric dynamics is essential for a reliable storm forecasting capability. The dayside magnetospheric response to an interplanetary coronal mass ejection (ICME; dynamic pressure Pdyn > 20 nPa and storm- time index SYM- H < - 150 nT) is investigated using in situ OMNI, Geotail, Cluster, MMS, GOES, Van Allen Probes, and THEMIS measurements. The dayside magnetic flux content is directly quantified from in situ magnetic field measurements at different radial distances. The arrival of the ICME, consisting of shock and sheath regions preceding a magnetic cloud, initiated a storm sudden commencement (SSC) phase (SYM- H ~ +50 nT). At SSC, the magnetopause standoff distance was compressed earthward at ICME shock encounter at an average rate ~- 10.8 Earth radii per hour for ~10 min, resulting in a rapid 40% reduction in the magnetospheric volume. The - closed- magnetic flux content remained constant at 170 ± 30 kWb inside the compressed dayside magnetosphere, even in the presence of dayside reconnection, as evident by an outsized flux transfer event containing 160 MWb. During the storm main and recovery phases, the magnetosphere expanded. The dayside magnetic flux did not remain constant within the expanding magnetosphere (110 ± 30 kWb), resulting in a 35% reduction in pre- storm flux content during the magnetic cloud encounter. At that stage, the magnetospheric magnetic flux was eroded resulting in a weakened dayside magnetospheric field strength at radial distances R - ¥Â 5 RE. It is concluded that the inadequate replenishment of the eroded dayside magnetospheric flux during the magnetosphere expansion phase is due to a time lag in storm- time Dungey cycle.Plain Language SummaryA clear understanding of Earth’s magnetospheric dynamics is essential for a reliable space weather forecasting capability. To achieve this, we take advantage of the Heliophysics System Observatory’s (HSO) multitude of in situ observations in order to, for the first time, quantify the amount of magnetic flux stored in the dayside magnetosphere. The stored magnetic flux shields our ground- based and space- borne assets from adverse space weather events. We examine the dayside magnetic flux content during an encounter with an interplanetary coronal mass ejection (ICME). ICME is a large- scale bundle of magnetic flux and charged particles originating from the Sun. Upon arrival, the ICME which occupied nearly one third of the space between the Sun and Earth forced the dayside magnetosphere to rapidly shrink down to geosynchronous orbit where most communications and weather satellites are located. Though the dayside magnetosphere significantly shrunk, its magnetic flux content remained constant. It was only when the dayside magnetosphere started to expand that the dayside magnetospheric flux content gradually reduced by 35%. It is concluded that, during large ICME encounters, the rate at which dayside magnetic flux is transported to the magnetotail is faster than the rate at which magnetic flux is recycled, via a process known as the Dungey cycle. In addition to the observed loss in magnetic flux, this time lag in Dungey cycle can further cause magnetopause shadowing, wherein significant population of magnetospheric charged particles is lost to solar wind.Key PointsDayside closed magnetic flux is quantified during an interplanetary coronal mass ejection encounter using cross- scale observationsClosed magnetic flux remains constant inside the reconnecting dayside magnetosphere compressed by 70% in storm sudden commencement phaseDayside closed magnetic flux is reduced by 35% in storm main phase, indicating a time lag in storm- time Dungey cycle
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.othergeomagnetic storm
dc.subject.otherflux transfer event
dc.subject.othercross- scale observations
dc.subject.otherDungey cycle
dc.subject.othermagnetic flux quantification
dc.subject.otherinterplanetary coronal mass ejection
dc.titleCross- Scale Quantification of Storm- Time Dayside Magnetospheric Magnetic Flux Content
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163381/2/jgra56038.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163381/1/jgra56038_am.pdfen_US
dc.identifier.doi10.1029/2020JA028027
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSinger, H., Matheson, L., Grubb, R., Newman, A., & Bouwer, D. ( 1996 ). Monitoring space weather with the GOES magnetometers (Vol. 2812, pp. 299 - 308 ). Paper presented at Proceedings of the SPIE 2812, GOES- 8 and Beyond. https://doi.org/10.1117/12.254077
dc.identifier.citedreferenceà ieroset, M., Phan, T. D., Drake, J. F., Eastwood, J. P., Fuselier, S. A., Strangeway, R. J., Haggerty, C., Shay, M. A., Oka, M., Wang, S., Chen, L. J., Kacem, I., Lavraud, B., Angelopoulos, V., Burch, J. L., Torbert, R. B., Ergun, R. E., Khotyaintsev, Y., Lindqvist, P. A., Gershman, D. J., Giles, B. L., Pollock, C., Moore, T. E., Russell, C. T., Saito, Y., Avanov, L. A., & Paterson, W. ( 2019 ). Reconnection with magnetic flux pileup at the interface of converging jets at the magnetopause. Geophysical Research Letters, 46, 1937 - 1946. https://doi.org/10.1029/2018GL080994
dc.identifier.citedreferencePollock, C. J., Burch, J. L., Chasapis, A., Giles, B. L., Mackler, D. A., Matthaeus, W. H., & Russell, C. T. ( 2018 ). Magnetospheric multiscale observations of turbulent magnetic and electron velocity fluctuations in Earth’s magnetosheath downstream of a quasi- parallel bow shock. Journal of Atmospheric and Solar- Terrestrial Physics, 177, 84 - 91. https://doi.org/10.1016/j.jastp.2017.12.006
dc.identifier.citedreferenceRijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. ( 1984 ). A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. Journal of Geophysical Research, 89 ( A2 ), 786 - 800. https://doi.org/10.1029/JA089iA02p00786
dc.identifier.citedreferenceRussell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., Magnes, W., Means, J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M., Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I., Valavanoglou, A., & Richter, I. ( 2016 ). The magnetospheric multiscale magnetometers. Space Science Reviews, 199, 189 - 256. https://doi.org/10.1007/s11214- 014- 0057- 3
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. C. ( 1979 ). ISEE observations of flux transfer events at the dayside magnetopause. Geophysical Research Letters, 6 ( 1 ), 33 - 36. https://doi.org/10.1029/GL006i001p00033
dc.identifier.citedreferenceRussell, C. T. ( 1972 ). The configuration of the magnetosphere. In E. R. Dyer (Ed.), Critical problems of magnetospheric physics (pp. 1 - 16 ). Washington, DC: National Academy of Sciences.
dc.identifier.citedreferenceRussell, C. T., & Qi, Y. ( 2020 ). Flux ropes are born in pairs: An outcome of interlinked, reconnecting flux tubes. Geophysical Research Letters, 47 ( 15 ), e2020GL087620. https://doi.org/10.1029/2020GL087620
dc.identifier.citedreferenceSarantos, M., & Slavin, J. A. ( 2009 ). On the possible formation of Alfvén wings at Mercury during encounters with coronal mass ejections. Geophysical Research Letters, 36, L04107. https://doi.org/10.1029/2008GL036747
dc.identifier.citedreferenceShue, J.- H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. ( 1997 ). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102 ( A5 ), 9497 - 9511. https://doi.org/10.1029/97JA00196
dc.identifier.citedreferenceShue, J.- H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103 ( A8 ), 17,691 - 17,700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSlavin, J. A., Middleton, H. R., Raines, J. M., Jia, X., Zhong, J., Sun, W.- J., Livi, S., Imber, S. M., Poh, G.- . K., Akhavan- Tafti, M., Jasinski, J. M., DiBraccio, G. A., Dong, C., Dewey, R. M., & Mays, M. L. ( 2019 ). MESSENGER observations of disappearing dayside magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 6613 - 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. Journal of Geophysical Research, 86 ( A13 ), 11,401 - 11,418. https://doi.org/10.1029/JA086iA13p11401
dc.identifier.citedreferenceSlavin, J. A., Imber, S. M., Boardsen, S. A., Di Braccio, G. A., Sundberg, T., Sarantos, M., Nieves- Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt, R. L., & Solomon, S. C. ( 2012 ). MESSENGER observations of a flux- transfer- event shower at Mercury. Journal of Geophysical Research, 117, A00M06. https://doi.org/10.1029/2012JA017926
dc.identifier.citedreferenceSonnerup, B. U. O., & Scheible, M. ( 1998 ). Minimum and maximum variance analysis. In G. Paschmann & P. W. Daly (Eds.), Analysis methods for multi- spacecraft data, ISSI Scientific Report SR- 001 (pp. 185 - 220 ). Bern, Switzerland: International Space Science Institute.
dc.identifier.citedreferenceStephens, G. K., Sitnov, M. I., Ukhorskiy, A. Y., Roelof, E. C., Tsyganenko, N. A., & Le, G. ( 2016 ). Empirical modeling of the storm time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents. Journal of Geophysical Research: Space Physics, 121, 157 - 170. https://doi.org/10.1002/2015JA021700
dc.identifier.citedreferenceTorbert, R. B., Burch, J. L., Phan, T. D., Hesse, M., Argall, M. R., Shuster, J., Ergun, R. E., Alm, L., Nakamura, R., Genestreti, K. J., Gershman, D. J., Paterson, W. R., Turner, D. L., Cohen, I., Giles, B. L., Pollock, C. J., Wang, S., Chen, L. J., Stawarz, J. E., Eastwood, J. P., Hwang, K. J., Farrugia, C., Dors, I., Vaith, H., Mouikis, C., Ardakani, A., Mauk, B. H., Fuselier, S. A., Russell, C. T., Strangeway, R. J., Moore, T. E., Drake, J. F., Shay, M. A., Khotyaintsev, Y. V., Lindqvist, P. A., Baumjohann, W., Wilder, F. D., Ahmadi, N., Dorelli, J. C., Avanov, L. A., Oka, M., Baker, D. N., Fennell, J. F., Blake, J. B., Jaynes, A. N., le Contel, O., Petrinec, S. M., Lavraud, B., & Saito, Y. ( 2018 ). Electron- scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science, 362 ( 6421 ), 1391 - 1395. https://doi.org/10.1126/science.aat2998
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high- resolution data- based magnetic field model. Journal of Geophysical Research, 112, A06225. https://doi.org/10.1029/2007JA012260
dc.identifier.citedreferenceTurner, D. L., Kilpua, E. K. J. J., Hietala, H., Claudepierre, S. G., O’Brien, T. P., Fennell, J. F., et al. ( 2019 ). The response of Earth’s electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers. Journal of Geophysical Research: Space Physics, 124, 1013 - 1034. https://doi.org/10.1029/2018JA026066
dc.identifier.citedreferenceTurner, D. L., Shprits, Y., Hartinger, M., & Angelopoulos, V. ( 2012 ). Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nature Physics, 8 ( 3 ), 208 - 212. https://doi.org/10.1038/nphys2185
dc.identifier.citedreferenceUkhorskiy, A. Y., Anderson, B. J., Brandt, P. C., & Tsyganenko, N. A. ( 2006 ). Storm time evolution of the outer radiation belt: Transport and losses. Journal of Geophysical Research, 111, A11S03. https://doi.org/10.1029/2006JA011690
dc.identifier.citedreferenceWang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M., Birn, J., Russell, C. T., Raeder, J., Kawano, H., & Zhang, X. X. ( 2006 ). Dependence of flux transfer events on solar wind conditions from 3 years of Cluster observations. Journal of Geophysical Research, 111, A04224. https://doi.org/10.1029/2005JA011342
dc.identifier.citedreferenceWanliss, J. A., & Showalter, K. M. ( 2006 ). High- resolution global storm index: Dst versus SYM- H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 - 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceWinter, L. M. ( 2019 ). Geomagnetically induced currents from extreme space weather events. Geomagnetically induced currents from the Sun to the power grid, 195 - 203.
dc.identifier.citedreferenceXiao, C. J., Pu, Z. Y., Ma, Z. W., Fu, S. Y., Huang, Z. Y., & Zong, Q. G. ( 2004 ). Inferring of flux rope orientation with the minimum variance analysis technique. Journal of Geophysical Research, 109, A11218. https://doi.org/10.1029/2004JA010594
dc.identifier.citedreferenceAkasofu, S.- I. ( 1981 ). Energy coupling between the solar wind and the magnetosphere. Space Science Reviews, 28 ( 2 ), 121 - 190. https://doi.org/10.1007/BF00218810
dc.identifier.citedreferenceAkhavan- Tafti, M., Palmroth, M., Slavin, J. A., Battarbee, M., Ganse, U., Grandin, M., Le, G., Gershman, D. J., Eastwood, J. P., & Stawarz, J. E. ( 2020 ). Comparative analysis of the Vlasiator simulations and MMS observations of multiple X- line reconnection and flux transfer events. Journal of Geophysical Research: Space Physics, 125, e2019JA027410. https://doi.org/10.1029/2019JA027410
dc.identifier.citedreferenceAkhavan- Tafti, M., Slavin, J. A., Eastwood, J. P., Cassak, P. A., & Gershman, D. J. ( 2019 ). MMS multi- point analysis of FTE evolution: Physical characteristics and dynamics. Journal of Geophysical Research: Space Physics, 124, 5376 - 5395. https://doi.org/10.1029/2018JA026311
dc.identifier.citedreferenceAkhavan- Tafti, M., Slavin, J. A., Sun, W. J., Le, G., & Gershman, D. J. ( 2019 ). MMS observations of plasma heating associated with FTE growth. Geophysical Research Letters, 46, 12,654 - 12,664. https://doi.org/10.1029/2019GL084843
dc.identifier.citedreferenceAkhavan- Tafti, M., Slavin, J. A. A., Le, G., Eastwood, J. P. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., & Burch, J. L. ( 2018 ). MMS examination of FTEs at the Earth’s subsolar magnetopause. Journal of Geophysical Research: Space Physics, 123, 1224 - 1241. https://doi.org/10.1002/2017JA024681
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ). The THEMIS mission. Space Science Reviews, 141 ( 1- 4 ), 5 - 34. https://doi.org/10.1007/s11214- 008- 9336- 1
dc.identifier.citedreferenceAngelopoulos, V., Artemyev, A., Phan, T. D., & Miyashita, Y. ( 2020 ). Near- Earth magnetotail reconnection powers space storms. Nature Physics, 16, 1 - 5. https://doi.org/10.1038/s41567- 019- 0749- 4
dc.identifier.citedreferenceAuster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., & Wiedemann, M. ( 2008 ). The THEMIS fluxgate magnetometer. Space Science Reviews, 141 ( 1- 4 ), 235 - 264. https://doi.org/10.1007/s11214- 008- 9365- 9
dc.identifier.citedreferenceBaker, D. N. ( 1996 ). Solar wind- magnetosphere drivers of space weather. Journal of Atmospheric and Terrestrial Physics, 58 ( 14 ), 1509 - 1526. https://doi.org/10.1016/0021- 9169(96)00006- 2
dc.identifier.citedreferenceBaker, D. N. ( 2000 ). Effects of the Sun on the Earth’s environment. Journal of Atmospheric and Solar- Terrestrial Physics, 62 ( 17- 18 ), 1669 - 1681. https://doi.org/10.1016/S1364- 6826(00)00119- X
dc.identifier.citedreferenceBalogh, A., Carr, C. M., Acuna, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.- H., Georgescu, E., Glassmeier, K.- H., Harris, J., Musmann, G., Oddy, T., & Schwingenschuh, K. ( 2001 ). The Cluster Magnetic Field Investigation: Overview of in- flight performance and initial results. Annales Geophysicae, 19. https://doi.org/10.5194/angeo- 19- 1207- 2001
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 199 ( 1- 4 ), 5 - 21. https://doi.org/10.1007/s11214- 015- 0164- 9
dc.identifier.citedreferenceBurch, J. L., & Phan, T. D. ( 2016 ). Magnetic reconnection at the dayside magnetopause: Advances with MMS. Geophysical Research Letters, 43, 8327 - 8338. https://doi.org/10.1002/2016GL069787
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ). Magnetic clouds and force- free fields with constant alpha. Journal of Geophysical Research, 93 ( A7 ), 7217. https://doi.org/10.1029/JA093iA07p07217
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 - 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEastwood, J. P., Phan, T. D., Fear, R. C., Sibeck, D. G., Angelopoulos, V., Ieroset, M., & Shay, M. A. ( 2012 ). Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause. Journal of Geophysical Research, 117, A08222. https://doi.org/10.1029/2012JA017722
dc.identifier.citedreferenceEscoubet, C. P., Schmidt, R., & Goldstein, M. L. ( 1997 ). Cluster- science and mission overview. In C. P. Escoubet, C. T. Russell, R. Schmidt (Eds.), The Cluster and Phoenix missions (pp. 11 - 32 ). Dordrecht: Springer. https://doi.org/10.1007/978- 94- 011- 5666- 0_1
dc.identifier.citedreferenceGoldstein, J., Angelopoulos, V., De Pascuale, S., Funsten, H. O., Kurth, W. S., LLera, K., McComas, D. J., Perez, J. D., Reeves, G. D., Spence, H. E., Thaller, S. A., Valek, P. W., & Wygant, J. R. ( 2017 ). Cross- scale observations of the 2015 St. Patrick’s day storm: THEMIS, Van Allen Probes, and TWINS. Journal of Geophysical Research: Space Physics, 122, 368 - 392. https://doi.org/10.1002/2016JA023173
dc.identifier.citedreferenceGonzalez, W. D., Joselyn, J.- A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. ( 1994 ). What is a geomagnetic storm? Journal of Geophysical Research, 99 ( A4 ), 5771 - 5792. https://doi.org/10.1029/93JA02867
dc.identifier.citedreferenceGonzalez, W. D., Tsurutani, B. T., Lepping, R. P., & Schwenn, R. ( 2002 ). Interplanetary phenomena associated with very intense geomagnetic storms. Journal of Atmospheric and Solar- Terrestrial Physics, 64 ( 2 ), 173 - 181. https://doi.org/10.1016/S1364- 6826(01)00082- 7
dc.identifier.citedreferenceGosling, J. T. ( 1990 ). Coronal mass ejections and magnetic flux ropes in interplanetary space. Physics of Magnetic Flux Ropes, 58, 343 - 364. https://doi.org/10.1029/GM058p0343
dc.identifier.citedreferenceKilpua, E., Koskinen, H. E. J., & Pulkkinen, T. I. ( 2017 ). Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 14 ( 1 ), 5. https://doi.org/10.1007/s41116- 017- 0009- 6
dc.identifier.citedreferenceKim, K.- H., Kim, G.- J., & Kwon, H.- J. ( 2018 ). Distribution of equatorial Alfvén velocity in the magnetosphere: A statistical analysis of THEMIS observations. Earth, Planets and Space, 70 ( 1 ), 1 - 7.
dc.identifier.citedreferenceKing, J. H., & Papitashvili, N. E. ( 2005 ). Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. Journal of Geophysical Research, 110, A02104. https://doi.org/10.1029/2004JA010649
dc.identifier.citedreferenceKletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J., Crawford, D., Dolan, J. S., Dvorsky, R., Hospodarsky, G. B., Howard, J., Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J., Mark, D., Pfaff, R. Jr., Phillips, J. R., Piker, C. W., Remington, S. L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., & Tyler, J. ( 2013 ). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 179 ( 1- 4 ), 127 - 181. https://doi.org/10.1007/s11214- 013- 9993- 6
dc.identifier.citedreferenceMauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. A. ( 2012 ). Science objectives and rationale for the Radiation Belt storm probes mission. In The Van Allen Probes mission (pp. 3 - 27 ). Boston, MA: Springer. https://doi.org/10.1007/978- 1- 4899- 7433- 4_2
dc.identifier.citedreferenceMeng, X., Tsurutani, B. T., & Mannucci, A. J. ( 2019 ). The solar and interplanetary causes of superstorms (minimum Dst - 250 nT) during the space age. Journal of Geophysical Research: Space Physics, 124, 3926 - 3948. https://doi.org/10.1029/2018JA026425
dc.identifier.citedreferenceMilan, S. E., Provan, G., & Hubert, B. ( 2007 ). Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates. Journal of Geophysical Research, 112, A01209. https://doi.org/10.1029/2006JA011642
dc.identifier.citedreferenceMilan, S. E., Wild, J. A., Hubert, B., Carr, C. M., Lucek, E. A., Bosqued, J. M., & Slavin, J. A. ( 2006 ). Flux closure during a substorm observed by Cluster, Double Star, IMAGE FUV, SuperDARN, and Greenland magnetometers. Annales Geophysicae, 24, 751 - 767. https://doi.org/10.5194/angeo- 24- 751- 2006
dc.identifier.citedreferenceMilan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G., & Villain, J.- P. ( 2003 ). Variations in the polar cap area during two substorm cycles. Annales Geophysicae, 21 ( 5 ), 1121 - 1140. https://doi.org/10.5194/angeo- 21- 1121- 2003
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.