Show simple item record

Comparing energy and water use of aqueous and gas‐based metalworking fluids 

dc.contributor.authorSupekar, Sarang D.
dc.contributor.authorGraziano, Diane J.
dc.contributor.authorSkerlos, Steven J.
dc.contributor.authorCresko, Joseph
dc.date.accessioned2020-11-04T16:03:07Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-11-04T16:03:07Z
dc.date.issued2020-10
dc.identifier.citationSupekar, Sarang D.; Graziano, Diane J.; Skerlos, Steven J.; Cresko, Joseph (2020). "Comparing energy and water use of aqueous and gas‐based metalworking fluids ." Journal of Industrial Ecology 24(5): 1158-1170.
dc.identifier.issn1088-1980
dc.identifier.issn1530-9290
dc.identifier.urihttps://hdl.handle.net/2027.42/163496
dc.description.abstractGas‐based metalworking fluids (MWFs) have been proposed as alternative coolants and lubricants in machining operations to mitigate concerns surrounding water use and pollution, industrial hygiene, occupational health, and performance limitations associated with water‐based (aqueous) MWFs that are ubiquitously used in the metals manufacturing industry. This study compares the primary energy and water use associated with the consumptive use, delivery, and disposal of aqueous MWFs with three gas‐based MWFs in the literature—minimum quantity lubricant‐in‐compressed air (MQL), liquid/gaseous N2, and liquid/supercritical CO2. The comparison accounts for reported differences in machining performance in peer‐reviewed experimental studies across several machining processes and materials. The analysis shows that despite the reported improvement in tool life with N2 and CO2‐based MWFs, the electricity‐ and water‐intensive separation and purification processes for N2 and CO2 lead to their higher primary energy and water use per volume of material machined relative to water‐based MWFs. Although MQL is found to have lower primary energy use, significant consumptive water use associated with the vegetable oil commonly used with this MWF leads to higher overall water use than aqueous MWF, which is operated in a recirculative system. Gas‐based MWFs thus shift the water use upstream of the manufacturing plant. Primary energy and water use of gas‐based MWFs could be reduced by focusing on achieving higher material removal rates and throughput compared to aqueous MWF instead of solely targeting improvements in tool life. Additionally, the consumptive use of CO2 and N2 MWFs could be minimized by optimizing their flow rates and delivery to precisely meet the cooling and lubrication needs of specific machining processes instead of flooding the tool and workpiece with these gases. This article met the requirements for a gold–gold JIE data openness badge described at http://jie.click/badges.
dc.publisherJohn Wiley & Sons
dc.subject.othertool life
dc.subject.otherwater‐energy nexus
dc.subject.othercutting fluids
dc.subject.otherdry factories
dc.subject.otherindustrial ecology
dc.subject.othersustainable manufacturing
dc.titleComparing energy and water use of aqueous and gas‐based metalworking fluids 
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163496/3/jiec12992.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163496/2/jiec12992-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163496/1/jiec12992_am.pdfen_US
dc.identifier.doi10.1111/jiec.12992
dc.identifier.sourceJournal of Industrial Ecology
dc.identifier.citedreferenceSimpson, A. T., Stear, M., Groves, J. A., Piney, M., Bradley, S. D., Stagg, S., & Crook, B. ( 2003 ). Occupational exposure to metalworking fluid mist and sump fluid contaminants. The Annals of Occupational Hygiene, 47 ( 1 ), 17 – 30. Retrieved from https://academic.oup.com/annweh/article/47/1/17/131235/Occupational-Exposure-to-Metalworking-Fluid-Mist
dc.identifier.citedreferenceHuijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., … van Zelm, R. ( 2017 ). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22 ( 2 ), 138 – 147.
dc.identifier.citedreferenceKara, S., & Li, W. ( 2011 ). Unit process energy consumption models for material removal processes. CIRP Annals, 60 ( 1 ), 37 – 40.
dc.identifier.citedreferenceMacknick, J., Sattler, S., Averyt, K., Clemmer, S., & Rogers, J. ( 2012 ). The water implications of generating electricity: Water use across the United States based on different electricity pathways through 2050. Environmental Research Letters, 7 ( 4 ), 045803.
dc.identifier.citedreferenceMarksberry, P. W., & Jawahir, I. S. ( 2008 ). A comprehensive tool‐wear/tool‐life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing. International Journal of Machine Tools and Manufacture, 48 ( 7–8 ), 878 – 886.
dc.identifier.citedreferenceMirer, F. E. ( 2010 ). New evidence on the health hazards and control of metalworking fluids since completion of the OSHA advisory committee report. American Journal of Industrial Medicine, 53 ( 8 ), 792 – 801.
dc.identifier.citedreferenceMulyana, T., Rahim, E. A., & Md Yahaya, S. N. ( 2017 ). The influence of cryogenic supercritical carbon dioxide cooling on tool wear during machining high thermal conductivity steel. Journal of Cleaner Production, 164, 950 – 962.
dc.identifier.citedreferencePusavec, F., Krajnik, P., & Kopac, J. ( 2010 ). Transitioning to sustainable production – Part I: Application on machining technologies. Journal of Cleaner Production, 18 ( 2 ), 174 – 184.
dc.identifier.citedreferenceRao, P., Sholes, D., & Cresko, J. ( 2019 ). Evaluation of U.S. manufacturing subsectors at risk of physical water shortages. Environmental Science & Technology, 53 ( 5 ), 2295 – 2303.
dc.identifier.citedreferenceRubin, D. B. ( 1974 ). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66 ( 5 ), 688 – 701.
dc.identifier.citedreferenceSadik, M. I., Isakson, S., Malakizadi, A., & Nyborg, L. ( 2016 ). Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti‐6Al‐4V. Procedia CIRP, 46, 91 – 94.
dc.identifier.citedreferenceSkerlos, S. J. ( 2013 ). Cutting fluids and their environmental impact. In Q. J. Wang & Y.‐W. Chung (Eds.), Encyclopedia of tribology (pp. 655 – 660 ). Boston, MA: Springer US. Retrieved from https://doi.org/10.1007/978-0-387-92897-5_614
dc.identifier.citedreferenceSkerlos, S. J., Hayes, K. F., Clarens, A. F., & Zhao, F. ( 2008 ). Current advances in sustainable metalworking fluids research. International Journal of Sustainable Manufacturing, 1 ( 1/2 ), 180 – 202.
dc.identifier.citedreferenceSmith, A. R., & Klosek, J. ( 2001 ). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70 ( 2 ), 115 – 134.
dc.identifier.citedreferenceSorbo, N. W., & Dionne, J. J. ( 2014 ). Dry drilling of stackup composite: Benefits of CO 2 cooling. SAE International Journal of Aerospace, 7 ( 1 ), 156 – 163.
dc.identifier.citedreferenceStephenson, D. A., Skerlos, S. J., King, A. S., & Supekar, S. D. ( 2014 ). Rough turning Inconel 750 with supercritical CO2‐based minimum quantity lubrication. Journal of Materials Processing Technology, 214 ( 3 ), 673 – 680.
dc.identifier.citedreferenceSupekar, S. D., Clarens, A. F., Stephenson, D. A., & Skerlos, S. J. ( 2012 ). Performance of supercritical carbon dioxide sprays as coolants and lubricants in representative metalworking operations. Journal of Materials Processing Technology, 212 ( 12 ), 2652 – 2658.
dc.identifier.citedreferenceSupekar, S. D., Graziano, D. J., Skerlos, S. J., & Cresko, J. ( 2019 ). LCI data for materials and processes comparing energy and water use of aqueous and gas‐based metalworking fluids. Retrieved from https://zenodo.org/record/3565781#.XiWhlU8zbcs
dc.identifier.citedreferenceSupekar, S. D., & Skerlos, S. J. ( 2014 ). Market‐driven emissions from recovery of carbon dioxide gas. Environmental Science & Technology, 48 ( 24 ), 14615 – 14623.
dc.identifier.citedreferenceTahri, C., Lequien, P., Outeiro, J. C., & Poulachon, G. ( 2017 ). CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: Application to milling of titanium alloy Ti‐6Al‐4V. Procedia CIRP, 58, 584 – 589.
dc.identifier.citedreferenceU. S. Census Bureau. ( 2016 ). Annual survey of manufactures. Washington, DC: U.S: Department of Commerce. Retrieved from https://www.census.gov/data/tables/2016/econ/asm/2016-asm.html
dc.identifier.citedreferenceWang, S., & Clarens, A. F. ( 2013 ). Analytical model of metalworking fluid penetration into the flank contact zone in orthogonal cutting. Journal of Manufacturing Processes, 15 ( 1 ), 41 – 50.
dc.identifier.citedreferenceWendt, R. ( 2018 ). Personal communication with R. Wendt, product manager. Eriez, Erie, PA, 14 November 2018. https://www.eriez.com/NA/EN/Products/Fluid-Recycling/Coolant-Recycling.htm
dc.identifier.citedreferenceYildiz, Y., & Nalbant, M. ( 2008 ). A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture, 48 ( 9 ), 947 – 964.
dc.identifier.citedreferenceBermingham, M. J., Palanisamy, S., Kent, D., & Dargusch, M. S. ( 2012 ). A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting. Journal of Materials Processing Technology, 212 ( 4 ), 752 – 765.
dc.identifier.citedreferenceBermingham, M. J., Palanisamy, S., Morr, D., Andrews, R., & Dargusch, M. S. ( 2014 ). Advantages of milling and drilling Ti‐6Al‐4V components with high‐pressure coolant. The International Journal of Advanced Manufacturing Technology, 72 ( 1–4 ), 77 – 88.
dc.identifier.citedreferenceBox, G. E. P., Hunter, W. G., & Hunter, J. S. ( 1978 ). Statistics for experimenters ( 1st ed ). New York: John Wiley & Sons.
dc.identifier.citedreferenceBrinksmeier, E., Meyer, D., Huesmann‐Cordes, A. G., & Herrmann, C. ( 2015 ). Metalworking fluids—Mechanisms and performance. CIRP Annals, 64 ( 2 ), 605 – 628.
dc.identifier.citedreferenceBurton, C. M., Crook, B., Scaife, H., Evans, G. S., & Barber, C. M. ( 2012 ). Systematic review of respiratory outbreaks associated with exposure to water‐based metalworking fluids. The Annals of Occupational Hygiene, 56 ( 4 ), 374 – 388.
dc.identifier.citedreferenceByers, J. P. ( 2017 ). Metalworking fluids ( 3rd ed. ). Boca Raton, FL: Taylor & Francis. Retrieved from https://www.taylorfrancis.com/books/e/9781498722230
dc.identifier.citedreferenceCalvert, G. M., Ward, E., Schnorr, T. M., & Fine, L. J. ( 1998 ). Cancer risks among workers exposed to metalworking fluids: A systematic review. American Journal of Industrial Medicine, 33 ( 3 ), 282 – 292.
dc.identifier.citedreferenceCheng, C., Phipps, D., & Alkhaddar, R. M. ( 2005 ). Treatment of spent metalworking fluids. Water Research, 39 ( 17 ), 4051 – 4063.
dc.identifier.citedreferenceClarens, A. F., Zimmerman, J. B., Keoleian, G. A., Hayes, K. F., & Skerlos, S. J. ( 2008 ). Comparison of life cycle emissions and energy consumption for environmentally adapted metalworking fluid systems. Environmental Science & Technology, 42 ( 22 ), 8534 – 8540.
dc.identifier.citedreferenceCopas, J. B., & Li, H. G. ( 1997 ). Inference for non‐random samples. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59 ( 1 ), 55 – 95.
dc.identifier.citedreferenceDe Chiffre, L., & Belluco, W. ( 2000 ). Comparison of methods for cutting fluid performance testing. CIRP Annals, 49 ( 1 ), 57 – 60.
dc.identifier.citedreferenceDebnath, S., Reddy, M. M., & Yi, Q. S. ( 2014 ). Environmental friendly cutting fluids and cooling techniques in machining: A review. Journal of Cleaner Production, 83, 33 – 47.
dc.identifier.citedreferenceEcoinvent. ( 2018 ). LCI database v3.5. Zurich, Switzerland: ETH Zurich; EPF Lausanne; Swiss Federal Laboratories for Materials Science and Technology; Institute for Sustainability Sciences; Agroscope. Retrieved from https://www.ecoinvent.org/home.html
dc.identifier.citedreferenceEzugwu, E. O. ( 2005 ). Key improvements in the machining of difficult‐to‐cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45 ( 12–13 ), 1353 – 1367.
dc.identifier.citedreferenceFisher, R. A. ( 1971 ). The design of experiments ( 9th ed. ). New York: Macmillan Publishing Company.
dc.identifier.citedreferenceFratila, D. ( 2010 ). Macro‐level environmental comparison of near‐dry machining and flood machining. Journal of Cleaner Production, 18 ( 10–11 ), 1031 – 1039.
dc.identifier.citedreferenceGlobal Market Insights. ( 2018 ). Metalworking fluids market, 2018– 2025: Retrieved from https://www.gminsights.com/industry-analysis/metalworking-fluids-market
dc.identifier.citedreferenceGoindi, G. S., & Sarkar, P. ( 2017 ). Dry machining: A step towards sustainable machining—Challenges and future directions. Journal of Cleaner Production, 165, 1557 – 1571.
dc.identifier.citedreferenceGordon, T. ( 2004 ). Metalworking fluid—The toxicity of a complex mixture. Journal of Toxicology and Environmental Health, Part A, 67 ( 3 ), 209 – 219.
dc.identifier.citedreferenceGreenland, S. ( 1990 ). Randomization, statistics, and causal inference. Epidemiology, 1 ( 6 ), 421 – 429.
dc.identifier.citedreferenceGutowski, T., Dahmus, J., & Thiriez, A. ( 2006 ). Electrical energy requirements for manufacturing processes. In Proceedings of the 13th CIRP international conference on life cycle engineering (pp. 623 – 628 ). Leuven, Belgium: Katholieke Universiteit Leuven.
dc.identifier.citedreferenceHeitbrink, W. A., Yacher, J. M., Deye, G. J., & Spencer, A. B. ( 2000 ). Mist control at a machining center, part 1: Mist characterization. AIHAJ ‐ American Industrial Hygiene Association, 61 ( 2 ), 275 – 281.
dc.identifier.citedreferenceHilal, N., Busca, G., Hankins, N., & Mohammad, A. W. ( 2004 ). The use of ultrafiltration and nanofiltration membranes in the treatment of metal‐working fluids. Desalination, 167, 227 – 238.
dc.identifier.citedreferenceHuijbregts, M. A. J., Hellweg, S., Frischknecht, R., Hendriks, H. W. M., Hungerbühler, K., & Hendriks, A. J. ( 2010 ). Cumulative energy demand as predictor for the environmental burden of commodity production. Environmental Science & Technology, 44 ( 6 ), 2189 – 2196.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.