Show simple item record

Anticoagulant medication adherence for cancer‐associated thrombosis: A comparison of LMWH to DOACs

dc.contributor.authorSchaefer, Jordan K.
dc.contributor.authorLi, Mengbing
dc.contributor.authorWu, Zhenke
dc.contributor.authorBasu, Tanima
dc.contributor.authorDorsch, Michael P.
dc.contributor.authorBarnes, Geoffrey D.
dc.contributor.authorCarrier, Marc
dc.contributor.authorGriggs, Jennifer J.
dc.contributor.authorSood, Suman L.
dc.date.accessioned2021-02-04T21:55:16Z
dc.date.available2022-02-04 16:55:15en
dc.date.available2021-02-04T21:55:16Z
dc.date.issued2021-01
dc.identifier.citationSchaefer, Jordan K.; Li, Mengbing; Wu, Zhenke; Basu, Tanima; Dorsch, Michael P.; Barnes, Geoffrey D.; Carrier, Marc; Griggs, Jennifer J.; Sood, Suman L. (2021). "Anticoagulant medication adherence for cancer‐associated thrombosis: A comparison of LMWH to DOACs." Journal of Thrombosis and Haemostasis 19(1): 212-220.
dc.identifier.issn1538-7933
dc.identifier.issn1538-7836
dc.identifier.urihttps://hdl.handle.net/2027.42/166289
dc.description.abstractBackgroundLow molecular weight heparin (LMWH) and direct oral anticoagulants (DOACs) are used to treat cancer‐associated thrombosis (CAT). It is not clear if patients are less adherent to LMWH compared to DOACs.ObjectivesTo compare medication persistence and adherence between LMWH and DOACs.Patients/MethodsWe analyzed Optum’s de‐identified Clinformatics® Data Mart Database of privately insured adults with cancer diagnosed between January 2009 and October 2015 who were undergoing chemotherapy, immunotherapy, targeted or hormonal therapies; developed CAT; and were treated with an outpatient anticoagulant. The proportion of days covered (PDC) was calculated from the date of anticoagulant prescription until the anticoagulant was switched, stopped, or the study end. Medication adherence was defined as PDC ≥ 80%, ≥95%, and by comparing the mean PDC.ResultsTwo propensity‐matched groups of 1128 patients were identified. Patient persistence was higher with DOACs compared to LMWH (median 116 days versus 34 days). With adherence defined as PDC ≥ 80%, we found no significant difference (95.6% versus 94.6% adherence with DOACs versus LMWH, P = .33). The mean difference of PDC between the two groups was also similar. With medication adherence defined as PDC ≥ 95%, adherence was evident in 73% of DOAC users and 81% of patients on LMWH (P < .001). Prescription copayments were higher on average for LMWH compared to DOACs (mean $153.61 versus 40.67; standard deviation $306.74 versus $33.11).ConclusionPatients remain on DOACs longer than LMWH, but medication adherence is similar with LMWH.
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Comprehensive Cancer Network
dc.subject.otherlow molecular weight heparin
dc.subject.otherdirect‐acting oral anticoagulants
dc.subject.otherpatient compliance
dc.subject.othervenous thromboembolism
dc.subject.otherduration of therapy
dc.titleAnticoagulant medication adherence for cancer‐associated thrombosis: A comparison of LMWH to DOACs
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166289/1/jth15153_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166289/2/jth15153.pdf
dc.identifier.doi10.1111/jth.15153
dc.identifier.doihttps://dx.doi.org/10.7302/212
dc.identifier.sourceJournal of Thrombosis and Haemostasis
dc.identifier.citedreferenceFang MC, Fan D, Sung SH, et al. Validity of using inpatient and outpatient administrative codes to identify acute venous thromboembolism: the CVRN VTE study. Med Care. 2017; 55: e137 ‐ e143. https://doi.org/10.1097/MLR.0000000000000524
dc.identifier.citedreferenceHisada Y, Geddings JE, Ay C, Mackman N. Venous thrombosis and cancer: from mouse models to clinical trials. J Thromb Haemost. 2015; 13: 1372 ‐ 1382. https://doi.org/10.1111/jth.13009
dc.identifier.citedreferenceCohoon KP, Ransom JE, Leibson CL, et al. Direct medical costs attributable to cancer‐associated venous thromboembolism: A population‐based longitudinal study. Am J Med. 2016; 129 ( 1000 ): e15 – e25. https://doi.org/10.1016/j.amjmed.2016.02.030
dc.identifier.citedreferenceLee AY, Levine MN, Baker RI, et al. Randomized Comparison of Low‐Molecular‐Weight Heparin versus Oral Anticoagulant Therapy for the Prevention of Recurrent Venous Thromboembolism in Patients with Cancer I. Low‐molecular‐weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003; 349: 146 ‐ 153. https://doi.org/10.1056/NEJMoa025313
dc.identifier.citedreferenceLee AYY, Kamphuisen PW, Meyer G, et al. Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: A randomized clinical trial. JAMA. 2015; 314: 677 ‐ 686. https://doi.org/10.1001/jama.2015.9243
dc.identifier.citedreferenceDeitcher SR, Kessler CM, Merli G, et al. Secondary prevention of venous thromboembolic events in patients with active cancer: enoxaparin alone versus initial enoxaparin followed by warfarin for a 180‐day period. Clin Appl Thromb Hemost. 2006; 12: 389 ‐ 396. https://doi.org/10.1177/1076029606293692
dc.identifier.citedreferenceHull RD, Pineo GF, Brant RF, et al. Long‐term low‐molecular‐weight heparin versus usual care in proximal‐vein thrombosis patients with cancer. Am J Med. 2006; 119: 1062 ‐ 1072. https://doi.org/10.1016/j.amjmed.2006.02.022
dc.identifier.citedreferenceStreiff MB, Holmstrom B, Angelini D NCCN guidelines insights: Cancer‐Associated Venous Thromboembolic Disease, Version 2.2018. J Natl Compr Canc Netw. 2018; 16: 1289 ‐ 1303. https://doi.org/10.6004/jnccn.2018.0084
dc.identifier.citedreferenceKahale LA, Hakoum MB, Tsolakian IG, et al. Anticoagulation for the long‐term treatment of venous thromboembolism in people with cancer. Cochrane Database Syst Rev. 2018; 6: CD006650. https://doi.org/10.1002/14651858.CD006650.pub5
dc.identifier.citedreferenceRaskob GE, van Es N, Verhamme P, et al. Edoxaban for the treatment of cancer‐associated venous thromboembolism. N Engl J Med. 2018; 378: 615 ‐ 624. https://doi.org/10.1056/NEJMoa1711948
dc.identifier.citedreferenceYoung A, Phillips J, Hancocks H, et al. OC‐11 ‐ Anticoagulation therapy in selected cancer patients at risk of recurrence of venous thromboembolism. Thromb Res. 2016; 140 ( Suppl 1 ): S172 ‐ S173. https://doi.org/10.1016/S0049‐3848(16)30128‐1
dc.identifier.citedreferenceMcBane RD 2nd, Wysokinski WE, Le‐Rademacher JG, et al. Apixaban and dalteparin in active malignancy‐associated venous thromboembolism: The ADAM VTE trial. J Thromb Haemost. 2020; 18: 411 ‐ 421. https://doi.org/10.1111/jth.14662
dc.identifier.citedreferenceLi A, Garcia DA, Lyman GH, Carrier M. Direct oral anticoagulant (DOAC) versus low‐molecular‐weight heparin (LMWH) for treatment of cancer associated thrombosis (CAT): A systematic review and meta‐analysis. Thromb Res. 2019; 173: 158 ‐ 163. https://doi.org/10.1016/j.thromres.2018.02.144
dc.identifier.citedreferenceAgnelli G, Becattini C, Meyer G, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020; 382: 1599 ‐ 1607. https://doi.org/10.1056/NEJMoa1915103
dc.identifier.citedreferenceCancer‐Associated Venous Thromboembolic Disease. Version 1.2020 edn. National Comprehensive Cancer Network; 2020.
dc.identifier.citedreferenceKey NS, Khorana AA, Kuderer NM, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2020; 38: 496 ‐ 520. https://doi.org/10.1200/JCO.19.01461
dc.identifier.citedreferenceCancer Therapy Look‐up Tables. Cancer Research Network.
dc.identifier.citedreferenceKhorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high‐risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013; 119: 648 ‐ 655. https://doi.org/10.1002/cncr.27772
dc.identifier.citedreferenceTamariz L, Harkins T, Nair V. A systematic review of validated methods for identifying venous thromboembolism using administrative and claims data. Pharmacoepidemiol Drug Saf. 2012; 21 ( Suppl 1 ): 154 ‐ 162. https://doi.org/10.1002/pds.2341
dc.identifier.citedreferenceSanfilippo KM, Wang TF, Gage BF, Liu W, Carson KR. Improving accuracy of International Classification of Diseases codes for venous thromboembolism in administrative data. Thromb Res. 2015; 135: 616 ‐ 620. https://doi.org/10.1016/j.thromres.2015.01.012
dc.identifier.citedreferenceHeckbert SR, Kooperberg C, Safford MM, et al. Comparison of self‐report, hospital discharge codes, and adjudication of cardiovascular events in the Women’s Health Initiative. Am J Epidemiol. 2004; 160: 1152 ‐ 1158. https://doi.org/10.1093/aje/kwh314
dc.identifier.citedreferenceWhite RH, Garcia M, Sadeghi B, et al. Evaluation of the predictive value of ICD‐9‐CM coded administrative data for venous thromboembolism in the United States. Thromb Res. 2010; 126: 61 ‐ 67. https://doi.org/10.1016/j.thromres.2010.03.009
dc.identifier.citedreferenceQuan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD‐9‐CM and ICD‐10 administrative data. Med Care. 2005; 43: 1130 ‐ 1139. https://doi.org/10.1097/01.mlr.0000182534.19832.83
dc.identifier.citedreferenceDesai RJ, Solomon DH, Shadick N, Iannaccone C, Kim SC. Identification of smoking using Medicare data–a validation study of claims‐based algorithms. Pharmacoepidemiol Drug Saf. 2016; 25: 472 ‐ 475. https://doi.org/10.1002/pds.3953
dc.identifier.citedreferenceCharlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373 ‐ 383. https://doi.org/10.1016/0021‐9681(87)90171‐8
dc.identifier.citedreferenceHershman DL, Tsui J, Wright JD, Coromilas EJ, Tsai WY, Neugut AI. Household net worth, racial disparities, and hormonal therapy adherence among women with early‐stage breast cancer. J Clin Oncol. 2015; 33: 1053 ‐ 1059. https://doi.org/10.1200/JCO.2014.58.3062
dc.identifier.citedreferenceCramer JA, Roy A, Burrell A, et al. Medication compliance and persistence: terminology and definitions. Value Health. 2008; 11: 44 ‐ 47. https://doi.org/10.1111/j.1524‐4733.2007.00213.x
dc.identifier.citedreferenceGillespie CW, Morin PE, Tucker JM, Purvis L. Medication adherence, health care utilization, and spending among privately insured adults with chronic conditions in the United States, 2010–2016. Am J Med. 2020; 133: 690 ‐ 704. e19. https://doi.org/10.1016/j.amjmed.2019.12.021
dc.identifier.citedreferenceAustin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011; 46: 399 ‐ 424. https://doi.org/10.1080/00273171.2011.568786
dc.identifier.citedreferenceKearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016; 149: 315 ‐ 352. https://doi.org/10.1016/j.chest.2015.11.026
dc.working.doi10.7302/212en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.