Show simple item record

Open‐source molecular modeling software in chemical engineering focusing on the Molecular Simulation Design Framework

dc.contributor.authorCummings, Peter T.
dc.contributor.authorM, Clare
dc.contributor.authorIacovella, Christopher R.
dc.contributor.authorLedeczi, Akos
dc.contributor.authorJankowski, Eric
dc.contributor.authorJayaraman, Arthi
dc.contributor.authorPalmer, Jeremy C.
dc.contributor.authorMaginn, Edward J.
dc.contributor.authorGlotzer, Sharon C.
dc.contributor.authorAnderson, Joshua A.
dc.contributor.authorIlja Siepmann, J.
dc.contributor.authorPotoff, Jeffrey
dc.contributor.authorMatsumoto, Ray A.
dc.contributor.authorGilmer, Justin B.
dc.contributor.authorDeFever, Ryan S.
dc.contributor.authorSingh, Ramanish
dc.contributor.authorCrawford, Brad
dc.date.accessioned2021-03-02T21:42:03Z
dc.date.available2022-04-02 16:42:01en
dc.date.available2021-03-02T21:42:03Z
dc.date.issued2021-03
dc.identifier.citationCummings, Peter T.; M, Clare; Iacovella, Christopher R.; Ledeczi, Akos; Jankowski, Eric; Jayaraman, Arthi; Palmer, Jeremy C.; Maginn, Edward J.; Glotzer, Sharon C.; Anderson, Joshua A.; Ilja Siepmann, J.; Potoff, Jeffrey; Matsumoto, Ray A.; Gilmer, Justin B.; DeFever, Ryan S.; Singh, Ramanish; Crawford, Brad (2021). "Open‐source molecular modeling software in chemical engineering focusing on the Molecular Simulation Design Framework." AIChE Journal 67(3): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/166332
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherthermodynamics/statistical
dc.subject.othercomputer simulations (MC and MD)
dc.subject.otheradsorption/gas
dc.subject.othersimulation, molecular
dc.titleOpen‐source molecular modeling software in chemical engineering focusing on the Molecular Simulation Design Framework
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166332/1/aic17206.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166332/2/aic17206_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166332/3/aic17206-sup-0001-supinfo.pdf
dc.identifier.doi10.1002/aic.17206
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceNSF Award # ACI‐1535150 ‐ SI2‐SSE: development of a software framework for formalizing forcefield atom‐typing for molecular simulation (PI: Iacovella). https://www.nsf.gov/awardsearch/showAward?AWD_ID=1535150. Accessed December 1, 2020.
dc.identifier.citedreferenceLin ST, Sandler SI. A priori phase equilibrium prediction from a segment contribution solvation model. Ind Eng Chem Res. 2002; 41 ( 5 ): 899 ‐ 913. https://doi.org/10.1021/ie001047w.
dc.identifier.citedreferenceBell IH, Mickoleit E, Hsieh CM, et al. A benchmark open‐source implementation of COSMO‐SAC. J Chem Theory Comput. 2020; 16 ( 4 ): 2635 ‐ 2646. https://doi.org/10.1021/acs.jctc.9b01016.
dc.identifier.citedreferenceFortunato ME, Colina CM. pysimm: a python package for simulation of molecular systems. SoftwareX. 2017; 6: 7 ‐ 12. https://doi.org/10.1016/j.softx.2016.12.002.
dc.identifier.citedreferenceMartin TB, Gartner TE, Jones RL, Snyder CR, Jayaraman A. pyPRISM: a computational tool for liquid‐state Theory calculations of macromolecular materials. Macromolecules. 2018; 51 ( 8 ): 2906 ‐ 2922. https://doi.org/10.1021/acs.macromol.8b00011.
dc.identifier.citedreferenceSchweizer KS, Curro JG. Integral‐equation theory of the structure of polymer melts. Phys Rev Lett. 1987; 58 ( 3 ): 246 ‐ 249. https://doi.org/10.1103/PhysRevLett.58.246.
dc.identifier.citedreferenceCummings PT, Gilmer JB. Open‐source molecular modeling software in chemical engineering. Curr Opin Chem Eng. 2019; 23: 99 ‐ 105. https://doi.org/10.1016/j.coche.2019.03.008.
dc.identifier.citedreferencePirhadi S, Sunseri J, Koes DR. Open source molecular modeling. J Mol Graph Model. 2016; 69: 127 ‐ 143. https://doi.org/10.1016/j.jmgm.2016.07.008.
dc.identifier.citedreferenceThe TOP500 project. https://top500.org. Accessed December 1, 2020.
dc.identifier.citedreferenceMolecular Simulation Design Framework (MoSDeF) Homepage. https://mosdef.org. Accessed December 1, 2020.
dc.identifier.citedreferenceMartínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009; 30 ( 13 ): 2157 ‐ 2164. https://doi.org/10.1002/jcc.21224.
dc.identifier.citedreferenceParmEd — ParmEd documentation. http://parmed.github.io/ParmEd/html/index.html. Accessed April 18, 2018.
dc.identifier.citedreferenceEastman P, Swails J, Chodera JD, et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput Biol. 2017; 13 ( 7 ): e1005659. https://doi.org/10.1371/journal.pcbi.1005659.
dc.identifier.citedreferenceEastman P, Pande VS. OpenMM: a hardware independent framework for molecular simulations. Comput Sci Eng. 2015; 12 ( 4 ): 34 ‐ 39. https://doi.org/10.1109/MCSE.2010.27.
dc.identifier.citedreferenceO’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Chem. 2011; 3 ( 1 ): 33. https://doi.org/10.1186/1758-2946-3-33.
dc.identifier.citedreferenceCase DA, Belfon K, Ben‐Shalom IY, et al. AMBER 2020. AMBER 2020 reference manual.
dc.identifier.citedreferenceAbreu CRA. Playmol. https://github.com/atoms-ufrj/playmol; 2018. Accessed December 12, 2020.
dc.identifier.citedreferenceNSF Award # CBET‐1028374 Collaborative Research: CDI‐Type II: cyber‐enabled design of functional nanomaterials. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1028374. Accessed December 1, 2020.
dc.identifier.citedreferenceNSF Award # ACI‐1047828 ‐ SI2‐SSI: development of an integrated molecular design environment for lubrication systems (iMoDELS) (PI: Cummings). https://www.nsf.gov/awardsearch/showAward?AWD_ID=1047828. Accessed December 1, 2020.
dc.identifier.citedreferenceInstitute for Software Integrated Systems. https://www.isis.vanderbilt.edu/. Accessed November 24, 2019.
dc.identifier.citedreferenceSztipanovits J, Karsai G. Model‐integrated computing. Computer (Long Beach Calif). 1997; 30 ( 4 ): 110 ‐ 111.
dc.identifier.citedreferencePlimpton S. Fast parallel algorithms for short‐range molecular dynamics. J Comput Phys. 1995; 117 ( 1 ): 1 ‐ 19. https://doi.org/10.1006/jcph.1995.1039.
dc.identifier.citedreferenceAbraham MJ, Murtola T, Schulz R, et al. Gromacs: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2: 19 ‐ 25. https://doi.org/10.1016/j.softx.2015.06.001.
dc.identifier.citedreferenceAnderson JA, Glaser J, Glotzer SC. HOOMD‐blue: a python package for high‐performance molecular dynamics and hard particle Monte Carlo simulations. Comput Mater Sci. 2020; 173: 109363. https://doi.org/10.1016/j.commatsci.2019.109363.
dc.identifier.citedreferenceKlein C, Sallai J, Jones TJ, Iacovella CR, M c Cabe C, Cummings PT. A hierarchical, component based approach to screening properties of soft matter. In: Snurr RQ, Adjiman CS, Kofke DA, eds. Foundations of Molecular Modeling and Simulation (Applications and Perspectives). Singapore: Springer; 2016: 79 ‐ 92. https://doi.org/10.1007/978-981-10-1128-3_5.
dc.identifier.citedreferencemBuild Github repository. https://github.com/mosdef-hub/mbuild. Accessed August 17, 2018.
dc.identifier.citedreferenceFoyer Github repository. https://github.com/mosdef-hub/foyer. Accessed August 10, 2020.
dc.identifier.citedreferenceIacovella CR, Sallai J, Klein C, Ma T. Idea paper: development of a software framework for formalizing forcefield atom‐typing for molecular simulation. Paper presented at: Fourth Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE4); Manchester, U.K.; 2016. Available at: http://ceur-ws.org/Vol-1686/WSSSPE4_paper_35.pdf
dc.identifier.citedreferenceDaylight theory: SMARTS—a language for describing molecular patterns. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed April 18, 2018.
dc.identifier.citedreferenceSimTK: OpenMM: Project Home. https://simtk.org/projects/openmm. Accessed April 18, 2018.
dc.identifier.citedreferenceThompson MW, Matsumoto R, Sacci RL, Sanders NC, Cummings PT. Scalable screening of soft matter: a case study of mixtures of ionic liquids and organic solvents. J Phys Chem B. 2019; 123 ( 6 ): 1340 ‐ 1347. https://doi.org/10.1021/acs.jpcb.8b11527.
dc.identifier.citedreferenceOsti NC, Matsumoto RA, Thompson MW, Cummings PT, Tyagi M, Mamontov E. Microscopic dynamics in an ionic liquid augmented with organic solvents. J Phys Chem C. 2019; 123 ( 32 ): 19354 ‐ 19361. https://doi.org/10.1021/acs.jpcc.9b05119.
dc.identifier.citedreferenceCui J, Kobayashi T, Sacci RL, Matsumoto RA, Cummings PT, Pruski M. Diffusivity and structure of room temperature ionic liquid in various organic solvents. J Phys Chem B. 2020; 124: 9931 ‐ 9937. https://doi.org/10.1021/acs.jpcb.0c07582
dc.identifier.citedreferenceNSF Award # OAC‐1835874 Collaborative Research: NSCI Framework: software for building a community‐based molecular modeling capability around the Molecular Simulation Design Framework (MoSDeF). https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835874. Accessed December 1, 2020.
dc.identifier.citedreferenceStriolo A, Chialvo AA, Cummings PT, Gubbins KE. Water adsorption in carbon‐slit nanopores. Langmuir. 2003; 19 ( 20 ): 8583 ‐ 8591. https://doi.org/10.1021/la0347354.
dc.identifier.citedreferenceMetropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953; 21 ( 6 ): 1087 ‐ 1092. https://doi.org/10.1063/1.1699114.
dc.identifier.citedreferenceAlder BJ, Wainwright TE. Phase transition for a hard sphere system. J Chem Phys. 1957; 27 ( 5 ): 1208 ‐ 1209. https://doi.org/10.1063/1.1743957.
dc.identifier.citedreferenceAlder BJ, Wainwright TE. Studies in molecular dynamics. I. General method. J Chem Phys. 1959; 31 ( 2 ): 459 ‐ 466. https://doi.org/10.1063/1.1730376.
dc.identifier.citedreferenceWood WW, Parker FR. Monte Carlo equation of state of molecules interacting with the Lennard‐Jones potential. I. A supercritical isotherm at about twice the critical temperature. J Chem Phys. 1957; 27 ( 3 ): 720 ‐ 733. https://doi.org/10.1063/1.1743822.
dc.identifier.citedreferenceRahman A. Correlations in the motion of atoms in liquid argon. Phys Rev. 1964; 136 ( 2A ): A405 ‐ A411. https://doi.org/10.1103/PhysRev.136.A405.
dc.identifier.citedreferenceNicolas JJ, Gubbins KE, Streett WB, Tildesley DJ. Equation of state for the Lennard‐Jones fluid. Mol Phys. 1979; 37 ( 5 ): 1429 ‐ 1454. https://doi.org/10.1080/00268977900101051.
dc.identifier.citedreferenceAllen MP, Tildesley DJ. Computer Simulation of Liquids. Vol 1. 2nd ed. Oxford, UK: Oxford University Press; 2017. https://doi.org/10.1093/oso/9780198803195.001.0001.
dc.identifier.citedreferenceWestmoreland PR, Kollman PA, Chaka AM, et al. Applying Molecular and Materials Modeling. Dordrecht: Springer Netherlands; 2002. https://doi.org/10.1007/978‐94‐017‐0765‐7.
dc.identifier.citedreferenceReed TMK, Gubbins KE. Applied Statistical Mechanics: Thermodynamic and Transport Properties of Fluids. New York: McGraw‐Hill; 1973. https://books.google.com/books?id=w_tQAAAAMAAJ.
dc.identifier.citedreferenceGray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: I: Fundamentals. Oxford, UK: OUP Oxford; 1984. https://books.google.com/books?id=3mz2RcnnMGwC.
dc.identifier.citedreferenceGray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: Vol 2: Applications. Oxford, UK: OUP Oxford; 2011. https://books.google.com/books?id=4xr8jwEACAAJ.
dc.identifier.citedreferencePanagiotopoulos AZ. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys. 1987; 61 ( 4 ): 813 ‐ 826. https://doi.org/10.1080/00268978700101491.
dc.identifier.citedreferenceParicaud P, Předota M, Chialvo AA, Cummings PT. From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. J Chem Phys. 2005; 122 ( 24 ): 244511. https://doi.org/10.1063/1.1940033.
dc.identifier.citedreferenceAnderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comput Phys. 2008; 227 ( 10 ): 5342 ‐ 5359. https://doi.org/10.1016/j.jcp.2008.01.047.
dc.identifier.citedreferenceGlaser J, Nguyen TD, Anderson JA, et al. Strong scaling of general‐purpose molecular dynamics simulations on GPUs. Comput Phys Commun. 2015; 192: 97 ‐ 107. https://doi.org/10.1016/j.cpc.2015.02.028.
dc.identifier.citedreferenceShah JK, Marin‐Rimoldi E, Mullen RG, et al. Cassandra: an open source Monte Carlo package for molecular simulation. J Comput Chem. 2017; 38 ( 19 ): 1727 ‐ 1739. https://doi.org/10.1002/jcc.24807.
dc.identifier.citedreferenceDubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2016; 42 ( 2 ): 81 ‐ 101. https://doi.org/10.1080/08927022.2015.1010082.
dc.identifier.citedreferenceNejahi Y, Soroush Barhaghi M, Mick J, et al. GOMC: GPU optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids. SoftwareX. 2019; 9: 20 ‐ 27. https://doi.org/10.1016/j.softx.2018.11.005.
dc.identifier.citedreferenceSchultz AJ, Kofke DA. Etomica: an object‐oriented framework for molecular simulation. J Comput Chem. 2015; 36 ( 8 ): 573 ‐ 583. https://doi.org/10.1002/jcc.23823.
dc.identifier.citedreferenceRamasubramani V, Dice BD, Harper ES, Spellings MP, Anderson JA, Glotzer SC. Freud: a software suite for high throughput analysis of particle simulation data. Comput Phys Commun. 2020; 254: 107275. https://doi.org/10.1016/j.cpc.2020.107275.
dc.identifier.citedreferenceAdorf CS, Dodd PM, Ramasubramani V, Glotzer SC. Simple data and workflow management with the signac framework. Comput Mater Sci. 2018; 146: 220 ‐ 229. https://doi.org/10.1016/j.commatsci.2018.01.035.
dc.identifier.citedreferenceKlein C, Summers AZ, Thompson MW, et al. Formalizing atom‐typing and the dissemination of force fields with foyer. Comput Mater Sci. 2019; 167 ( May ): 215 ‐ 227. https://doi.org/10.1016/j.commatsci.2019.05.026.
dc.identifier.citedreferenceSummers AZ, Gilmer JB, Iacovella CR, Cummings PT, M c Cabe C. MoSDeF, a python framework enabling large‐scale computational screening of soft matter: application to chemistry‐property relationships in lubricating monolayer films. J Chem Theory Comput. 2020; 16 ( 3 ): 1779 ‐ 1793. https://doi.org/10.1021/acs.jctc.9b01183.
dc.identifier.citedreferenceThompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular simulations that are transparent, reproducible, usable by others, and extensible (TRUE). Mol Phys. 2020; 118: e1742938. https://doi.org/10.1080/00268976.2020.1742938.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.