Show simple item record

Impacts of Coral Growth on Geochemistry: Lessons From the Galápagos Islands

dc.contributor.authorReed, Emma V.
dc.contributor.authorThompson, Diane M.
dc.contributor.authorCole, Julia E.
dc.contributor.authorLough, Janice M.
dc.contributor.authorCantin, Neal E.
dc.contributor.authorCheung, Anson H.
dc.contributor.authorTudhope, Alexander
dc.contributor.authorVetter, Lael
dc.contributor.authorJimenez, Gloria
dc.contributor.authorEdwards, R. Lawrence
dc.date.accessioned2021-05-12T17:25:55Z
dc.date.available2022-05-12 13:25:49en
dc.date.available2021-05-12T17:25:55Z
dc.date.issued2021-04
dc.identifier.citationReed, Emma V.; Thompson, Diane M.; Cole, Julia E.; Lough, Janice M.; Cantin, Neal E.; Cheung, Anson H.; Tudhope, Alexander; Vetter, Lael; Jimenez, Gloria; Edwards, R. Lawrence (2021). "Impacts of Coral Growth on Geochemistry: Lessons From the Galápagos Islands." Paleoceanography and Paleoclimatology 36(4): n/a-n/a.
dc.identifier.issn2572-4517
dc.identifier.issn2572-4525
dc.identifier.urihttps://hdl.handle.net/2027.42/167516
dc.description.abstractCoral geochemical climate reconstructions can extend our knowledge of global climate variability and trends over time scales longer than those of instrumental data. However, such reconstructions can be biased by coral growth and skeletal architecture, such as growth troughs, off‐axis corallite orientation, and changing growth direction. This study quantifies the impact of skeletal architecture and growth on geochemistry using measurements of coral skeletal density, extension rate, and calcification rate, and uses these metrics to improve paleoclimate reconstructions. We present paired geochemistry‐density records at Wolf Island, Galápagos, from three Porites lobata corals: two new paired density and geochemistry records from one fossil coral, and new density data from two previously published modern geochemistry records. We categorize each sampling transect used in this record by the quality of its orientation with respect to skeletal architecture. We observe relationships between geochemistry and density that are not detected using extension or calcification rate alone. These density‐geochemistry relationships likely reflect both the response of coral growth to environmental conditions and the nonclimatic impact of skeletal architecture on geochemistry in suboptimal sampling transects. Correlations of density with Sr/Ca, Ba/Ca, and Mg/Ca are consistent with the Rayleigh fractionation model of trace element incorporation into coral skeletons. Removing transects with suboptimal skeletal architecture increases mean reconstructed SST closer to instrumental mean SST, and lowers errors of reconstruction by up to 20%. These results demonstrate the usefulness of coral density data for assessing skeletal architecture and growth when generating coral paleoclimate records.Key PointsWe present a paired trace element and density record from one fossil coral from Wolf Island, Galápagos, and new density data from two published modern Wolf Island corals (all Porites lobata)Density is more sensitive than extension rate for identifying relationships of coral growth/skeletal architecture with geochemistryRelationships between density and Sr/Ca, Mg/Ca, and Ba/Ca are consistent with a Rayleigh fractionation model of trace element incorporation into coral skeletons
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.othereastern Pacific
dc.subject.otherCoral density
dc.subject.othercoral geochemistry
dc.subject.othercoral growth
dc.titleImpacts of Coral Growth on Geochemistry: Lessons From the Galápagos Islands
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167516/1/palo20993.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167516/2/2020PA004051-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167516/3/palo20993_am.pdf
dc.identifier.doi10.1029/2020PA004051
dc.identifier.sourcePaleoceanography and Paleoclimatology
dc.identifier.citedreferenceMcConnaughey, T. ( 1989 ). 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53 ( 1 ), 151 – 162. https://doi.org/10.1016/0016-7037(89)90282-2
dc.identifier.citedreferenceMontagna, P., McCulloch, M., Douville, E., López Correa, M., Trotter, J., Rodolfo‐Metalpa, R., et al. ( 2014 ). Li/Mg systematics in scleractinian corals: Calibration of the thermometer. Geochimica et Cosmochimica Acta, 132, 288 – 310. https://doi.org/10.1016/j.gca.2014.02.005
dc.identifier.citedreferenceNurhati, I. S., Cobb, K. M., & Di Lorenzo, E. ( 2011 ). Decadal‐scale SST and salinity variations in the central tropical Pacific: Signatures of natural and anthropogenic climate change. Journal of Climate, 24 ( 13 ), 3294 – 3308.
dc.identifier.citedreferenceProuty, N. G., Field, M. E., Stock, J. D., Jupiter, S. D., & McCulloch, M. ( 2010 ). Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Marine Pollution Bulletin, 60 ( 10 ), 1822 – 1835. https://doi.org/10.1016/j.marpolbul.2010.05.024
dc.identifier.citedreferenceRayner, N. A. ( 2003 ). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108 ( D14 ), 4407. https://doi.org/10.1029/2002JD002670
dc.identifier.citedreferenceReed, E. V., Cole, J. E., Lough, J. M., & Cantin, N. E. ( 2019 ). Linking climate variability and growth in coral skeletal records from the Great Barrier Reef. Coral Reefs, 38 ( 1 ), 29 – 43.
dc.identifier.citedreferenceReed, E. V., Thompson, D. M., Cole, J. E., Lough, J. M., Cantin, N. E., Cheung, A. H., et al. ( 2021 ). Impact of coral growth on geochemistry: Lessons from the Galapagos Islands [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4555511
dc.identifier.citedreferenceReynolds, R., Smith, T., Liu, C., Chelton, D., Casey, K., & Schlax, M. ( 2007 ). Daily high‐resolution‐blended analyses for sea surface temperature. Journal of Climate, 20, 5473 – 5496. https://doi.org/10.1175/2007JCLI1824.1
dc.identifier.citedreferenceSayani, H. R., Cobb, K. M., Cohen, A. L., Elliott, W. C., Nurhati, I. S., Dunbar, R. B., et al. ( 2011 ). Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochimica et Cosmochimica Acta, 75 ( 21 ), 6361 – 6373. https://doi.org/10.1016/j.gca.2011.08.026
dc.identifier.citedreferenceSchindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. ( 2012 ). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9 ( 7 ), 676 – 682. https://doi.org/10.1038/nmeth.2019
dc.identifier.citedreferenceSchrag, D. P. ( 1999 ). Rapid analysis of high‐precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography, 14 ( 2 ), 97 – 102. https://doi.org/10.1029/1998PA900025
dc.identifier.citedreferenceScoffin, T. P., Tudhope, A. W., Brown, B. E., Chansang, H., & Cheeney, R. F. ( 1992 ). Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs, 11, 1 – 11. https://doi.org/10.1007/BF00291929
dc.identifier.citedreferenceShen, C. C., Lawrence Edwards, R., Cheng, H., Dorale, J. A., Thomas, R. B., Bradley Moran, S., et al. ( 2002 ). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185 ( 3–4 ), 165 – 178. https://doi.org/10.1016/S0009-2541(01)00404-1
dc.identifier.citedreferenceShen, G., Cole, J., Lea, D., Linn, L., Mcconnaughey, T., & Fairbanks, R. ( 1992 ). Surface ocean variability at Galápagos from 1936‐1982: Calibration of geochemical tracers in corals. Paleoceanography, 7 ( 5 ), 563 – 588.
dc.identifier.citedreferenceShen, G. T., Campbell, T. M., Dunbar, R. B., Wellington, G. M., Colgan, M. W., & Glynn, P. W. ( 1991 ). Paleochemistry of manganese in corals from the Galápagos Islands. Coral Reefs, 10, 91 – 100.
dc.identifier.citedreferenceSmith, L. W., Barshis, D., & Birkeland, C. ( 2007 ). Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs, 26 ( 3 ), 559 – 567. https://doi.org/10.1007/s00338-007-0216-z
dc.identifier.citedreferenceTanzil, J. T. I., Lee, J. N., Brown, B. E., Quax, R., Kaandorp, J. A., Lough, J. M., & Todd, P. A. ( 2016 ). Luminescence and density banding patterns in massive Porites corals around the Thai‐Malay Peninsula, Southeast Asia. Limnology and Oceanography, 61, 2003 – 2026. https://doi.org/10.1002/lno.10350
dc.identifier.citedreferenceThirumalai, K., Singh, A., & Ramesh, R. ( 2011 ). A MATLAB™ code to perform weighted linear regression with (correlated or uncorrelated) errors in bivariate data. Journal of the Geological Society of India, 77 ( 4 ), 377 – 380. https://doi.org/10.1007/s12594-011-0044-1
dc.identifier.citedreferenceThompson, D. M., Cole, J. E., Shen, G. T., Tudhope, A. W., & Meehl, G. A. ( 2015 ). Early twentieth‐century warming linked to tropical Pacific wind strength. Nature Geoscience, 8, 117 – 121. https://doi.org/10.1038/NGEO2321
dc.identifier.citedreferenceTierney, J. E., Abram, N. J., Anchukaitis, K. J., Evans, M. N., Giry, C., Kilbourne, K. H., et al. ( 2015 ). Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography, 30, 226 – 252. https://doi.org/10.1002/2014PA002717
dc.identifier.citedreferenceTrueman, M., & D’Ozouville, N. ( 2010 ). Characterizing the Galápagos terrestrial climate in the face of global climate change. Galápagos Research, 67, 26 – 37.
dc.identifier.citedreferenceWeber, J. N. ( 1973 ). Incorporation of stontium into reef coral skeletal carbonates. Geochimica et Cosmochimica Acta, 37 ( 1971 ), 2173 – 2190.
dc.identifier.citedreferenceWellington, G. M., Dunbar, R. B., & Merlen, G. ( 1996 ). Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography, 11 ( 4 ), 467 – 480. https://doi.org/10.1029/96PA01023
dc.identifier.citedreferenceWolff, M. ( 2010 ). Galápagos does not show recent warming but increased seasonality. Galápagos Research, 67, 38 – 44.
dc.identifier.citedreferenceWorld Meteorological Organization. ( 1966 ). Technical Note No. 79: Climatic Change, WMO No. 195.TP.100 (p. 80 ).
dc.identifier.citedreferenceWu, H. C., Linsley, B. K., Dassié, E. P., Schiraldi, B., & deMenocal, P. B. ( 2013 ). Oceanographic variability in the South Pacific Convergence Zone region over the last 210 years from multi‐site coral Sr/Ca records. Geochemistry, Geophysics, Geosystems, 14, 1435 – 1453. https://doi.org/10.1029/2012GC004293
dc.identifier.citedreferenceCantarero, S. I., Tanzil, J. T., & Goodkin, N. F. ( 2017 ). Simultaneous analysis of Ba and Sr to Ca ratios in scleractinian corals by inductively coupled plasma optical emissions spectrometry. Limnology and Oceanography: Methods, 15 ( 1 ), 116 – 123. https://doi.org/10.1002/lom3.10152
dc.identifier.citedreferenceChalker, B. E., & Barnes, D. J. ( 1990 ). Gamma densitometry for the measurement of skeletal density. Coral Reefs, 9 ( 1 ), 11 – 23. https://doi.org/10.1007/BF00686717
dc.identifier.citedreferenceHathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., et al. ( 2013 ). Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochemistry, Geophysics, Geosystems, 14, 3730 – 3750. https://doi.org/10.1002/ggge.20230
dc.identifier.citedreferenceKu, H. H. ( 1966 ). Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards. Section C: Engineering and Instrumentation, 70C ( 4 ), 263 – 273. https://doi.org/10.6028/jres.070C.025
dc.identifier.citedreferenceWyrtki, K. ( 1966 ). Oceanography of the eastern equatorial Pacific Ocean. Oceanography and Marine Biology Annual Review, 4, 33 – 68.
dc.identifier.citedreferenceAbram, N. J., Gagan, M., McCulloch, M., Chappell, J., & Hantoro, W. ( 2003 ). Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301 ( 5635 ), 952 – 955. https://doi.org/10.1126/science.109198310.1126/science.1083841
dc.identifier.citedreferenceAbram, N. J., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T., & Suwargadi, B. W. ( 2007 ). Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature, 445 ( 7125 ), 299 – 302. https://doi.org/10.1038/nature05477
dc.identifier.citedreferenceAbram, N. J., Wright, N. M., Ellis, B., Dixon, B. C., Wurtzel, J. B., England, M. H., et al. ( 2020 ). Coupling of Indo‐Pacific climate variability over the last millennium. Nature, 579 ( 7799 ), 385 – 392. https://doi.org/10.1038/s41586-020-2084-4
dc.identifier.citedreferenceAlibert, C., & Kinsley, L. ( 2008 ). A 170‐year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? Journal of Geophysical Research, 113, C04008. https://doi.org/10.1029/2006JC003979
dc.identifier.citedreferenceAlibert, C., & McCulloch, M. T. ( 1997 ). Strontium/calcium ratios in modern Porites corals From the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO. Paleoceanography, 12 ( 3 ), 345 – 363. https://doi.org/10.1029/97PA00318
dc.identifier.citedreferenceAllison, N., & Finch, A. A. ( 2004 ). High‐resolution Sr/Ca records in modern Porites lobata corals: Effects of skeletal extension rate and architecture. Geochemistry, Geophysics, Geosystems, 5, Q05001. https://doi.org/10.1029/2004GC000696
dc.identifier.citedreferenceAnderson, K. D., Cantin, N. E., Heron, S. F., Pisapia, C., & Pratchett, M. S. ( 2017 ). Variation in growth rates of branching corals along Australia’s Great Barrier Reef. Scientific Reports, 7 ( 1 ), 2920. https://doi.org/10.1038/s41598-017-03085-1
dc.identifier.citedreferenceBeck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., et al. ( 1992 ). Sea‐surface temperature from coral skeletal strontium/calcium ratios. Science, 257 ( 5070 ), 644 – 647. https://doi.org/10.1126/science.257.5070.644
dc.identifier.citedreferenceBretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. ( 1999 ). The effective number of spatial degrees of freedom of a time‐varying field. Journal of Climate, 12 ( 7 ), 1990 – 2009. https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.co;2
dc.identifier.citedreferenceBuddemeier, R. W., Maragos, J. E., & Knutson, D. W. ( 1974 ). Radiographic studies of reef coral exoskeletons: Rates and patterns of coral growth. Journal of Experimental Marine Biology and Ecology, 14 ( 2 ), 179 – 199. https://doi.org/10.1016/0022-0981(74)90024-0
dc.identifier.citedreferenceCantin, N. E., & Lough, J. M. ( 2014 ). Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One, 9 ( 2 ), e88720. https://doi.org/10.1371/journal.pone.0088720
dc.identifier.citedreferenceCarilli, J. E., Hartmann, A. C., Heron, S. F., Pandolfi, J. M., Cobb, K., Sayani, H., et al. ( 2017 ). Porites coral response to an oceanographic and human impact gradient in the Line Islands. Limnology and Oceanography, 62, 2850. https://doi.org/10.1002/lno.10670
dc.identifier.citedreferenceCarilli, J. E., McGregor, H. V., Gaudry, J. J., Donner, S. D., Gagan, M. K., Stevenson, S., et al. ( 2014 ). Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation. Paleoceanography, 29, 1031 – 1045. https://doi.org/10.1002/2014PA002683
dc.identifier.citedreferenceChalker, B., Barnes, D., & Isdale, P. ( 1985 ). Calibration of x‐ray densitometry for the measurement of coral skeletal density. Coral Reefs, 4 ( 2 ), 95 – 100. https://doi.org/10.1007/BF00300867
dc.identifier.citedreferenceCheng, H., Lawrence Edwards, R., Shen, C.‐C., Polyak, V. J., Asmerom, Y., Woodhead, J., et al. ( 2013 ). Improvements in 230Th dating, 230Th and 234U half‐life values, and U‐Th isotopic measurements by multi‐collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372, 82 – 91. https://doi.org/10.1016/j.epsl.2013.04.006
dc.identifier.citedreferenceCobb, K. M., Charles, C. D., Cheng, H., & Edwards, R. L. ( 2003 ). El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 ( 6946 ), 271 – 276. https://doi.org/10.1038/nature01779
dc.identifier.citedreferenceCobb, K. M., Westphal, N., Sayani, H. R., Di Lorenzo, J. T. E., Cheng, H., Edwards, R. L., & Charles, C. D. ( 2013 ). Highly variable El Niño‐Southern Oscillation throughout the holocene. Science, 339 ( 6115 ), 67 – 70. https://doi.org/10.1126/science.1228246
dc.identifier.citedreferenceCohen, A. L., & Gaetani, G. A. ( 2010 ). Ion partitioning and the geochemistry of coral skeletons: Solving the mystery of the vital effect. EMU Notes in Mineralogy, 11, 377 – 397. https://doi.org/10.1180/EMU-notes.10.11
dc.identifier.citedreferenceCohen, A. L., & Hart, S. R. ( 1997 ). The effect of colony topography on climate signals in coral skeleton. Geochimica et Cosmochimica Acta, 61 ( 18 ), 3905 – 3912. https://doi.org/10.1016/S0016-7037(97)00200-7
dc.identifier.citedreferenceCohen, A. L., & Hart, S. R. ( 2004 ). Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography, 19, PA4031. https://doi.org/10.1029/2004PA001084
dc.identifier.citedreferenceCohen, J. ( 1977 ). The t test for means. Statistical power analysis for the behavioral sciences (Chap. 2, pp. 19 – 74 ). Academic Press. https://doi.org/10.1016/B978-0-12-179060-8.50007-4
dc.identifier.citedreferenceCole, J., & Tudhope, A. W. ( 2017 ). Coral reefs of the Eastern Tropical Pacific. In P. W. Glynn (Ed.), Coral reefs of the eastern tropical Pacific (Chap. 19, pp. 535 – 548 ). Dordrecht, Netherlands: Springer Science+Business Media. https://doi.org/10.1007/978-94-017-7499-4
dc.identifier.citedreferenceComboul, M., Emile‐Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., & Thompson, D. M. ( 2014 ). A probabilistic model of chronological errors in layer‐counted climate proxies: Applications to annually banded coral archives. Climate of the Past, 10 ( 2 ), 825 – 841. https://doi.org/10.5194/cp-10-825-2014
dc.identifier.citedreferenceComboul, M., Emile‐Geay, J., Hakim, G. J., & Evans, M. N. ( 2015 ). Paleoclimate sampling as a sensor placement problem. Journal of Climate, 28 ( 19 ), 7717 – 7740. https://doi.org/10.1175/JCLI-D-14-00802.1
dc.identifier.citedreferenceCorrège, T. ( 2006 ). Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 408 – 428. https://doi.org/10.1016/j.palaeo.2005.10.014
dc.identifier.citedreferenceCortés, J. ( 1997 ). Biology and geology of eastern Pacific coral reefs. Coral Reefs, 16, S39 – S46. https://doi.org/10.1007/s003380050240
dc.identifier.citedreferenceDarke, W. M., & Barnes, D. J. ( 1993 ). Growth trajectories of corallites and ages of polyps in massive colonies of reef‐building corals of the genus Porites. Marine Biology, 117, 321 – 326. https://doi.org/10.1007/BF00345677
dc.identifier.citedreferenceDarwin, C., & Bonney, T. G. ( 1889 ). The structure and distribution of coral reefs. London: Smith Elder, & Co.
dc.identifier.citedreferenceDawdy, D. R., & Matalas, N. C. ( 1964 ). Statistical and probability analysis of hydrologic data, part III: Analysis of variance, covariance and time series. In V. T. Chow (Ed.), Handbook of applied hydrology, a compendium of water‐resources technology (pp. 8.68 – 8.90 ). New York, NY: McGraw‐Hill Book Company.
dc.identifier.citedreferenceDe’ath, G., Lough, J. M., & Fabricius, K. E. ( 2009 ). Declining coral calcification on the Great Barrier Reef. Science, 323, 116 – 120.
dc.identifier.citedreferenceDeCarlo, T. M., Gaetani, G. A., Holcomb, M., & Cohen, A. L. ( 2015 ). Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. Geochimica et Cosmochimica Acta, 162, 151 – 165. https://doi.org/10.1016/j.gca.2015.04.016
dc.identifier.citedreferenceDelaney, M. L., Linn, L. J., & Druffel, E. R. M. ( 1993 ). Seasonal cycles of manganese and cadmium in coral from the Galapagos Islands. Geochimica et Cosmochimica Acta, 57 ( 2 ), 347 – 354. https://doi.org/10.1016/0016-7037(93)90436-Z
dc.identifier.citedreferenceDeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K., & Shen, C.‐C. ( 2012 ). Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nature Climate Change, 2, 799 – 804. https://doi.org/10.1038/nclimate1583
dc.identifier.citedreferenceDeLong, K. L., Quinn, T. M., Taylor, F. W., Shen, C.‐C., & Lin, K. ( 2013 ). Improving coral‐base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 6 – 24. https://doi.org/10.1016/j.palaeo.2012.08.019
dc.identifier.citedreferencede Villiers, S., Nelson, B. K., & Chivas, A. R. ( 1995 ). Biological controls on coral Sr/Ca and δ 18O reconstructions of sea surface temperatures. Science, 269, 1247 – 1250. https://doi.org/10.1126/science.269.5228.1247
dc.identifier.citedreferenceDodge, R. E., Szmant, A., Garcia, R., Swart, P., Forester, A., & Leder, J. ( 1992 ). Skeletal structural basis of density banding in the Reef coral Montastraea annularis. In Proceedings of the Seventh International Coral Reef Symposium, Guam (Vol. 1, pp. 186 – 195 ).
dc.identifier.citedreferenceD’Olivo, J. P., Georgiou, L., Falter, J., DeCarlo, T. M., Irigoien, X., Voolstra, C. R., et al. ( 2019 ). Long‐term impacts of the 1997–1998 bleaching event on the growth and resilience of massive Porites corals from the central red sea. Geochemistry, Geophysics, Geosystems, 20, 2936 – 2954. https://doi.org/10.1029/2019GC008312
dc.identifier.citedreferenceD’Olivo, J. P., & McCulloch, M. T. ( 2017 ). Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Scientific Reports, 7 ( 1 ), 2207. https://doi.org/10.1038/s41598-017-02306-x
dc.identifier.citedreferenceDruffel, E. R. M., Griffin, S., Hwang, J., Komada, T., Beaupre, S. R., Druffel‐Rodriguez, K. C., & Southon, G. M. J. ( 2004 ). Variability of monthly radiocarbon during the 1760S in corals from the Galapagos Islands. Radiocarbon, 46 ( 2 ), 627 – 631. https://doi.org/10.1017/s0033822200035670
dc.identifier.citedreferenceDunbar, R. B., Wellington, G. M., Colgan, M. W., & Glynn, P. W. ( 1994 ). Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galápagos Corals. Paleoceanography, 9 ( 2 ), 291 – 315. https://doi.org/10.1029/93PA03501
dc.identifier.citedreferenceEmile‐Geay, J., McKay, N., Kaufman, D., Von Gunten, L., Wang, J., Anchukaitis, K., et al. ( 2017 ). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4, 170088. https://doi.org/10.1038/sdata.2017.88
dc.identifier.citedreferenceFabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., et al. ( 2011 ). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 1, 165 – 169. https://doi.org/10.1038/NCLIMATE1122
dc.identifier.citedreferenceFallon, S. J., McCulloch, M. T., & Alibert, C. ( 2003 ). Examining water temperature proxies in Porites corals from the Great Barrier Reef: A cross‐shelf comparison. Coral Reefs, 22 ( 4 ), 389 – 404. https://doi.org/10.1007/s00338-003-0322-5
dc.identifier.citedreferenceFelis, T. ( 2020 ). Extending the instrumental record of ocean‐atmosphere variability into the last interglacial using tropical corals. Oceanography, 33 ( 2 ), 68 – 79. https://doi.org/10.5670/oceanog.2020.209
dc.identifier.citedreferenceFelis, T., Pätzold, J., & Loya, Y. ( 2003 ). Mean oxygen‐isotope signatures in Porites spp. corals: Inter‐colony variability and correction for extension‐rate effects. Coral Reefs, 22 ( 4 ), 328 – 336. https://doi.org/10.1007/s00338-003-0324-3
dc.identifier.citedreferenceFelis, T., Suzuki, A., Kuhnert, H., Rimbu, N., & Kawahata, H. ( 2010 ). Pacific Decadal Oscillation documented in a coral record of North Pacific winter temperature since 1873. Geophysical Research Letters, 37, L14605. https://doi.org/10.1029/2010GL043572
dc.identifier.citedreferenceFerrier‐Pagès, C., Sauzéat, L., & Balter, V. ( 2018 ). Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts. Global Change Biology, 24 ( 7 ), 3145 – 3157. https://doi.org/10.1111/gcb.14141
dc.identifier.citedreferenceFleitmann, D., Dunbar, R. B., McCulloch, M., Mudelsee, M., Vuille, M., McClanahan, T. R., et al. ( 2007 ). East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophysical Research Letters, 34, L04401. https://doi.org/10.1029/2006GL028525
dc.identifier.citedreferenceFreeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., et al. ( 2017 ). ICOADS release 3.0: A major update to the historical marine climate record. International Journal of Climatology, 37 ( 5 ), 2211 – 2232. https://doi.org/10.1002/joc.4775
dc.identifier.citedreferenceGaetani, G. A., & Cohen, A. L. ( 2006 ). Element partitioning during precipitation of aragonite from seawater: A framework for understanding paleoproxies. Geochimica et Cosmochimica Acta, 70 ( 18 ), 4617 – 4634. https://doi.org/10.1016/j.gca.2006.07.008
dc.identifier.citedreferenceGlynn, P. W. ( 2001 ). Eastern Pacific coral reef ecosystems. In U. Seeliger, & B. Kjerfve (Eds.), Coastal marine ecosystems of Latin America (pp. 281 – 305 ). Berlin, Germany: Springer.
dc.identifier.citedreferenceGlynn, P. W., Alvarado, J. J., Banks, S., Cortés, J., Feingold, J. S., Jiménez, C., et al. ( 2017 ). Eastern Pacific coral reef provinces, coral community structure and composition: An overview. In P. Glynn, D. Manzello, & I. Enochs (Eds.), Coral reefs of the eastern tropical Pacific. Coral reefs of the world (Vol. 8, pp. 107 – 176 ). Dordrecht, Netherlands: Springer.
dc.identifier.citedreferenceGlynn, P. W., Cortés, J., Guzmán, H. M., & Richmond, R. H. ( 1988 ). El Niño (1982‐83) associated coral mortality and relationship to sea surface temperature deviations in the tropical eastern Pacific. In Proceedings 6th International Coral Reef Symposium (Vol. 3, pp. 237 – 243 ).
dc.identifier.citedreferenceGlynn, P. W., Feingold, J. S., Baker, A., Banks, S., Baums, I. B., Cole, J., et al. ( 2018 ). State of corals and coral reefs of the Galápagos Islands (Ecuador): Past, present and future. Marine Pollution Bulletin, 133, 717 – 733. https://doi.org/10.1016/j.marpolbul.2018.06.002
dc.identifier.citedreferenceGoodkin, N. F., Hughen, K. A., & Cohen, A. L. ( 2007 ). A multicoral calibration method to approximate a universal equation relating Sr/Ca and growth rate to sea surface temperature. Paleoceanography, 22, PA1214. https://doi.org/10.1029/2006PA001312
dc.identifier.citedreferenceGoodkin, N. F., Hughen, K. A., Cohen, A. L., & Smith, S. R. ( 2005 ). Record of little ice age sea surface temperatures at Bermuda using a growth‐dependent calibration of coral Sr/Ca. Paleoceanography, 20, PA4016. https://doi.org/10.1029/2005PA001140
dc.identifier.citedreferenceGrothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y., et al. ( 2020 ). Enhanced El Niño‐Southern Oscillation variability in recent decades. Geophysical Research Letters, 47, e2019GL083906. https://doi.org/10.1029/2019GL083906
dc.identifier.citedreferenceGrove, C. A., Kasper, S., Zinke, J., Pfeiffer, M., Garbe‐Schönberg, D., & Brummer, G.‐J. A. ( 2013 ). Confounding effects of coral growth and high SST variability on skeletal Sr/Ca: Implications for coral paleothermometry. Geochemistry, Geophysics, Geosystems, 14, 1277 – 1293. https://doi.org/10.1002/ggge.20095
dc.identifier.citedreferenceHereid, K. A., Quinn, T. M., & Okumura, Y. M. ( 2013 ). Assessing spatial variability in El Niño‐Southern Oscillation event detection skill using coral geochemistry. Paleoceanography, 28, 14 – 23. https://doi.org/10.1029/2012PA002352
dc.identifier.citedreferenceHuang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., et al. ( 2017 ). Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30, 8179 – 8205. https://doi.org/10.1175/jcli-d-16-0836.1
dc.identifier.citedreferenceHudson, J. H. ( 1981 ). Growth rates in Montastraea annularis: A record of environmental change in Key Largo Coral Reef marine Sanctuary, Florida. Deep Sea Research Part B. Oceanographic Literature Review, 28 ( 12 ), 882. https://doi.org/10.1016/0198-0254(81)91549-1
dc.identifier.citedreferenceHudson, J. H., Shinn, E. A., Halley, R. B., & Lidz, B. ( 1976 ). Sclerochronology: A tool for interpreting past environments. Geology, 4 ( 6 ), 361 – 364. https://doi.org/10.1130/0091-7613(1976)4⟨361:SATFIP⟩2.0.CO;210.1130/0091-7613(1976)4<361:satfip>2.0.co;2
dc.identifier.citedreferenceHumphreys, A. F., Halfar, J., Ingle, J. C., Manzello, D., Reymond, C. E., Westphal, H., & Riegl, B. ( 2018 ). Effect of seawater temperature, pH, and nutrients on the distribution and character of low abundance shallow water benthic foraminifera in the Galapagos. PLoS One, 13 ( 9 ), e0202746. https://doi.org/10.1371/journal.pone.0202746
dc.identifier.citedreferenceJimenez, G., Cole, J. E., Thompson, D. M., & Tudhope, A. W. ( 2018 ). Northern Galápagos corals reveal twentieth century warming in the eastern tropical pacific. Geophysical Research Letters, 45, 1981 – 1988. https://doi.org/10.1002/2017GL075323
dc.identifier.citedreferenceKessler, W. S. ( 2006 ). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69 ( 2–4 ), 181 – 217. https://doi.org/10.1016/j.pocean.2006.03.009
dc.identifier.citedreferenceKuffner, I. B., Bartels, E., Stathakopoulos, A., Enochs, I. C., Kolodziej, G., Toth, L. T., & Manzello, D. P. ( 2017 ). Plasticity in skeletal characteristics of nursery‐raised staghorn coral, Acropora cervicornis. Coral Reefs, 36 ( 3 ), 679 – 684. https://doi.org/10.1007/s00338-017-1560-2
dc.identifier.citedreferenceKuffner, I. B., Jokiel, P. L., Rodgers, K. S., Andersson, A. J., & MacKenzie, F. T. ( 2012 ). An apparent “vital effect” of calcification rate on the Sr/Ca temperature proxy in the reef coral Montipora capitata. Geochemistry, Geophysics, Geosystems, 13, Q08004. https://doi.org/10.1029/2012GC004128
dc.identifier.citedreferenceLaVigne, M., Grottoli, A. G., Palardi, J. E., & Sherrell, R. M. ( 2016 ). Multi‐colony calibrations of coral Ba/Ca with a contemporaneous in situ seawater barium record. Geochimica et Cosmochimica Acta, 179, 203 – 216.
dc.identifier.citedreferenceLinn, L. J., Delaney, M. L., & Druffel, E. R. M. ( 1990 ). Trace metals in contemporary and seventeenth‐century Galápagos coral: Records of seasonal and annual variations. Geochimica et Cosmochimica Acta, 54, 387 – 394.
dc.identifier.citedreferenceLinsley, B. K., Dunbar, R. B., Wellington, G. M., & Mucciarone, D. A. ( 1994 ). A coral‐based reconstruction of Intertropical Convergence Zone variability over Central America since 1707. Journal of Geophysical Research, 99 ( C5 ), 9977 – 9994. https://doi.org/10.1029/94JC00360
dc.identifier.citedreferenceLinsley, B. K., Ren, L., & Howe, S. S. ( 2000 ). El Nino Southern Oscillation (ENSO) and decadal‐scale climate variability at 10N in the eastern Pacific from 1893 to 1994: A coral‐based reconstruction from Clipperton Atoll. Paleoceanography, 15 ( 3 ), 322 – 335. https://doi.org/10.1029/1999PA000428
dc.identifier.citedreferenceLinsley, B. K., Wu, H. C., Dassié, E. P., & Schrag, D. P. ( 2015 ). Decadal changes in South Pacific sea surface temperatures and the relationship to the Pacific decadal oscillation and upper ocean heat content. Geophysical Research Letters, 42, 2358 – 2366. https://doi.org/10.1002/2015GL063045
dc.identifier.citedreferenceLoope, G., Thompson, D., Cole, J., & Overpeck, J. ( 2020 ). Is there a low‐frequency bias in multiproxy reconstructions of tropical Pacific SST variability? Quaternary Science Reviews, 246, 2358 – 2366. https://doi.org/10.1016/j.quascirev.2020.106530
dc.identifier.citedreferenceLough, J. M. ( 2008 ). Coral calcification from skeletal records revisited. Marine Ecology Progress Series, 373, 257 – 264. https://doi.org/10.3354/meps07398
dc.identifier.citedreferenceLough, J. M., & Barnes, D. J. ( 1990 ). Intra‐annual timing of density band formation of Porites coral from the central Great Barrier Reef. Journal of Experimental Marine Biology and Ecology, 135, 35 – 57.
dc.identifier.citedreferenceLough, J. M., & Barnes, D. J. ( 1997 ). Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: A proxy for seawater temperature and a background of variability against which to identify unnatural change. Journal of Experimental Marine Biology and Ecology, 211, 29 – 67.
dc.identifier.citedreferenceLough, J. M., & Barnes, D. J. ( 2000 ). Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245, 225 – 243.
dc.identifier.citedreferenceLough, J. M., Barnes, D. J., Devereux, M. J., Tobin, B. J., & Tobin, S. ( 1999 ). Variability in growth characteristics of massive Porites on the Great Barrier Reef. Tech. Rep. 28. Townsville: CRC Reef Research Centre.
dc.identifier.citedreferenceLough, J. M., & Cooper, T. F. ( 2011 ). New insights from coral growth band studies in an era of rapid environmental change. Earth‐Science Reviews, 108, 170 – 184. https://doi.org/10.1016/j.earscirev.2011.07.001
dc.identifier.citedreferenceMaina, J., de Moel, H., Vermaat, J. E., Bruggemann, J. H., Guillaume, M. M. M., Grove, C. A., et al. ( 2012 ). Linking coral river runoff proxies with climate variability, hydrology and land‐use in Madagascar catchments. Marine Pollution Bulletin, 64 ( 10 ), 2047 – 2059. https://doi.org/10.1016/j.marpolbul.2012.06.027
dc.identifier.citedreferenceManzello, D. P. ( 2010 ). Ocean acidification hotspots: Spatiotemporal dynamics of the seawater CO 2 system of eastern Pacific coral reefs. Limnology and Oceanography, 55, 239 – 248.
dc.identifier.citedreferenceManzello, D. P., Enochs, I. C., Bruckner, A., Renaud, P. G., Kolodziej, G., Budd, D. A., et al. ( 2014 ). Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophysical Research Letters, 41, 9001 – 9008. https://doi.org/10.1002/2014GL062501
dc.identifier.citedreferenceManzello, D. P., Kleypas, J. A., Budd, D. A., Eakin, C. M., Glynn, P. W., & Langdon, C. ( 2008 ). Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high‐CO 2 world. Proceedings of the National Academy of Sciences of the United States of America, 105, 10450 – 10455.
dc.identifier.citedreferenceMarchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., & Montagna, P. ( 2018 ). A simple biomineralization model to explain Li, Mg, and Sr incorporation into aragonitic foraminifera and corals. Earth and Planetary Science Letters, 481, 20 – 29. https://doi.org/10.1016/j.epsl.2017.10.022
dc.identifier.citedreferenceMarshall, J. F., & McCulloch, M. T. ( 2002 ). An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochimica et Cosmochimica Acta, 66 ( 18 ), 3263 – 3280. https://doi.org/10.1016/S0016-7037(02)00926-2
dc.identifier.citedreferenceMcCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M., & Trotter, J. A. ( 2017 ). Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation. Nature Communications, 8, 15686. https://doi.org/10.1038/ncomms15686
dc.identifier.citedreferenceMcCulloch, M. T., Fallon, S., Wyndham, T., Hendy, E., Lough, J., & Barnes, D. ( 2003 ). Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421, 727 – 730. https://doi.org/10.1038/nature01361
dc.identifier.citedreferenceMitsuguchi, T. E., Matsumoto, Abe, O., Uchida, T., & Isdale, P. J. ( 1996 ). Mg/Ca thermometry in coral skeletons. Science, 274 ( 5289 ), 961 – 963. https://doi.org/10.1126/science.274.5289.961
dc.identifier.citedreferenceMontaggioni, L. F., Le Cornec, F., Corrège, T., & Cabioch, G. ( 2006 ). Coral barium/calcium record of mid‐Holocene upwelling activity in New Caledonia, South‐West Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 436 – 455. https://doi.org/10.1016/j.palaeo.2005.12.018
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.