Show simple item record

Rhodium Single‐Atom Catalysts on Titania for Reverse Water Gas Shift Reaction Explored by First Principles Mechanistic Analysis and Compared to Nanoclusters

dc.contributor.authorDoherty, Francis
dc.contributor.authorGoldsmith, Bryan R.
dc.date.accessioned2021-08-03T18:13:53Z
dc.date.available2022-08-03 14:13:52en
dc.date.available2021-08-03T18:13:53Z
dc.date.issued2021-07-07
dc.identifier.citationDoherty, Francis; Goldsmith, Bryan R. (2021). "Rhodium Single‐Atom Catalysts on Titania for Reverse Water Gas Shift Reaction Explored by First Principles Mechanistic Analysis and Compared to Nanoclusters." ChemCatChem 13(13): 3155-3164.
dc.identifier.issn1867-3880
dc.identifier.issn1867-3899
dc.identifier.urihttps://hdl.handle.net/2027.42/168428
dc.description.abstractThe thermocatalytic reduction of CO2 by H2 often proceeds via two competing reaction mechanisms – the reverse water gas shift reaction (rWGSR, CO2+H2⇌CO+H2O) and methanation (CO2+4H2⇌CH4+2H2O). Atomically dispersed Rh1 catalysts on TiO2 show high selectivity toward the rWGSR compared with larger Rh nanoclusters, but the origin of this size‐dependent selectivity has not been fully explained. Here we report density functional theory (DFT) calculations and microkinetic simulations that clarify the Rh1 active sites and rWGSR pathway on anatase TiO2(101), as well as the high rWGSR selectivity of Rh1 compared with supported Rhx (x=2–8 atoms) nanoclusters. DFT‐computed formation energies, vibrational frequency analysis, and microkinetic modeling suggest three plausible active sites: Rh1 on titania (Rh1/TiO2(101)), Rh1 with a nearby hydroxyl group (Rh1OH/TiO2(101)), and Rh1 near an oxygen vacancy at a three‐fold coordinated site (Rh1 near O3cvac). Predicted turnover frequencies and apparent activation barriers for Rh1 indicate a faster reaction involving CO2 dissociation assisted by a support oxygen vacancy via Rh1 near O3cvac, as well as slower reactions involving Rh1OH/TiO2(101) or Rh1/TiO2(101) through a COOH intermediate. These Rh1 sites are selective toward CO rather than CH4 because of the weak adsorption of CO, large barrier for C−O bond dissociation, and the lack of nearby metal sites for H2 dissociation, in contrast to Rhx nanoclusters, including Rh2 dimers.The thermocatalytic reduction of CO2+H2 by Rh/TiO2 proceeds via two competing reaction mechanisms depending on whether single atoms or nanoclusters are used. DFT and microkinetic modeling suggest a preferred reaction involving CO2 dissociation assisted by a support oxygen vacancy. Rh1 sites are selective toward CO rather than CH4 because of the weak adsorption of CO, large barrier for C−O bond dissociation, and the lack of nearby metal sites for H2 dissociation, in contrast to Rhx nanoclusters, including Rh2 dimers.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSingle-Atom Catalyst
dc.subject.otherheterogeneous catalysis
dc.subject.otherCO2 Reduction
dc.subject.otherdensity functional theory
dc.subject.othermicrokinetic modeling
dc.titleRhodium Single‐Atom Catalysts on Titania for Reverse Water Gas Shift Reaction Explored by First Principles Mechanistic Analysis and Compared to Nanoclusters
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168428/1/cctc202100292-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168428/2/cctc202100292_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168428/3/cctc202100292.pdf
dc.identifier.doi10.1002/cctc.202100292
dc.identifier.sourceChemCatChem
dc.identifier.citedreferenceZ. Hu, H. Metiu, J. Phys. Chem. C 2011, 115, 5841.
dc.identifier.citedreferenceM. A. Newton, C. Belver-Coldeira, A. Martínez-Arias, M. Fernández-García, Nat. Mater. 2007, 6, 528.
dc.identifier.citedreferenceA. J. Dent, J. Evans, S. G. Fiddy, B. Jyoti, M. A. Newton, M. Tromp, Angew. Chem. Int. Ed. 2007, 46, 5356.
dc.identifier.citedreferenceA. Berkó, J. Szökő, F. Solymosi, Surf. Sci. 2004, 566–568, 337.
dc.identifier.citedreferenceF. Solymosi, M. Pasztor, J. Phys. Chem. 1985, 89, 4789.
dc.identifier.citedreferenceTakanori. Mizushima, Kazuyuki. Tohji, Yasuo. Udagawa, Akifumi. Ueno, J. Phys. Chem. 1990, 94, 4980.
dc.identifier.citedreferenceB. R. Goldsmith, E. D. Sanderson, R. Ouyang, W. X. Li, J. Phys. Chem. C 2014, 118, 9588.
dc.identifier.citedreferenceR. Ouyang, J.-X. Liu, W.-X. Li, J. Am. Chem. Soc. 2013, 135, 1760.
dc.identifier.citedreferenceA. Berkó, F. Solymosi, J. Catal. 1999, 183, 91.
dc.identifier.citedreferenceJ. Evans, B. Hayden, F. Mosselmans, A. Murray, Surf. Sci. 1994, 301, 61.
dc.identifier.citedreferenceJ. Evans, B. Hayden, F. Mosselmans, A. Murray, Surf. Sci. Lett. 1992, 279, L159.
dc.identifier.citedreferenceM. Frank, R. Kühnemuth, M. Bäumer, H.-J. Freund, Surf. Sci. 1999, 427–428, 288.
dc.identifier.citedreferenceC. Asokan, H. V. Thang, G. Pacchioni, P. Christopher, Catal. Sci. Technol. 2020, 10, 1597.
dc.identifier.citedreferenceS. Ma, W. Song, B. Liu, H. Zheng, J. Deng, W. Zhong, et al., Catal. Sci. Technol. 2016, 6, 6128.
dc.identifier.citedreferenceI. V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proc. Nat. Acad. Sci. 2018, 115, E9261.
dc.identifier.citedreferenceO. R. Luca, A. Q. Fenwick, J. Photochem. Photobiol. B 2015, 152, 26.
dc.identifier.citedreferenceJ. H. Kwak, L. Kovarik, J. Szanyi, ACS Catal. 2013, 3, 2449.
dc.identifier.citedreferenceJ. Lin, A. Wang, B. Qiao, X. Liu, X. Yang, X. Wang, et al., J. Am. Chem. Soc. 2013, 135, 15314.
dc.identifier.citedreferenceG. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
dc.identifier.citedreferenceG. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
dc.identifier.citedreferenceG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 11.
dc.identifier.citedreferenceM. R. Ranade, A. Navrotsky, H. Z. Zhang, J. F. Banfield, S. H. Elder, A. Zaban, et al., Proc. Nat. Acad. Sci. 2002, 99, 6476.
dc.identifier.citedreferenceA. Vittadini, M. Casarin, A. Selloni, Theor. Chem. Acc. 2007, 117, 663.
dc.identifier.citedreferenceR. Hengerer, B. Bolliger, M. Erbudak, M. Grätzel, Surf. Sci. 2000, 460, 162.
dc.identifier.citedreferenceA. H. Larsen, J. Jens, J. Blomqvist, J. Phys. Condens. Matter 2017, 29, 273002.
dc.identifier.citedreferenceL. Iyengar, K. V. K. Rao, S. V. N. Naidu, J. Am. Ceram. Soc. 1969, 53, 124.
dc.identifier.citedreferenceG. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
dc.identifier.citedreferenceS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132.
dc.identifier.citedreferenceB. J. Morgan, G. W. Watson, Surf. Sci. 2007, 601, 5034.
dc.identifier.citedreferenceH. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, et al., J. Am. Chem. Soc. 2015, 137, 10484.
dc.identifier.citedreferenceN. Mina-Camilde, C. Manzanares, J. F. Caballero, J. Chem. Educ. 1996, 73, 804.
dc.identifier.citedreferenceL. B. Vilhelmsen, B. Hammer, J. Chem. Phys. 2014, 141, 044711.
dc.identifier.citedreferenceS. R. Bahn, K. W. Jacobsen, Comput. Sci. Eng. 2002, 4, 56.
dc.identifier.citedreferenceA. Bruix, J. T. Margraf, M. Andersen, K. Reuter, Nat. Catal. 2019, 2, 659.
dc.identifier.citedreferenceC. T. Campbell, ACS Catal. 2017, 7, 2770.
dc.identifier.citedreferenceI. A. W. Filot, R. J. P. Broos, J. P. M. van Rijn, G. J. H. A. van Heugten, R. A. van Santen, E. J. M. Hensen, ACS Catal. 2015, 5, 5453.
dc.identifier.citedreferenceJ.-X. Liu, D. Richards, N. Singh, B. R. Goldsmith, ACS Catal. 2019, 9, 7052.
dc.identifier.citedreferenceM. D. Porosoff, B. Yan, J. G. Chen, Energy Environ. Sci. 2016, 9, 62.
dc.identifier.citedreferenceY. Tang, C. Asokan, M. Xu, G. W. Graham, X. Pan, P. Christopher, et al., Nat. Commun. 2019, 10, 1.
dc.identifier.citedreferenceJ. T. Yates, T. M. Duncan, R. W. Vaughan, J. Chem. Phys. 1979, 71, 9.
dc.identifier.citedreferenceJ. T. Yates, T. M. Duncan, S. D. Worley, R. W. Vaughan, J. Chem. Phys. 1979, 70, 1219.
dc.identifier.citedreferenceH. Miessner, I. Burkhardt, D. Gutschick, A. Zecchina, C. Morterra, G. Spoto, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1989, 85, 2113.
dc.identifier.citedreferenceS. Trautmann, M. Baerns, J. Catal. 1994, 150, 335.
dc.identifier.citedreferenceJ. Rasko, F. Solymosi, J. Phys. Chem. 1994, 98, 7147.
dc.identifier.citedreferenceM. Frank, R. Kühnemuth, M. Bäumer, H.-J. Freund, Surf. Sci. 2000, 454–456, 968.
dc.identifier.citedreferenceY. Ji, Y. Luo, J. Am. Chem. Soc. 2016, 138, 15896.
dc.identifier.citedreferenceÉ. Novák, K. Fodor, T. Szailer, A. Oszkó, A. Erdöhelyi, Top. Catal. 2002, 20, 107.
dc.identifier.citedreferenceX. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 2013, 5, 3601.
dc.identifier.citedreferenceY. He, O. Dulub, H. Cheng, A. Selloni, U. Diebold, Phys. Rev. Lett. 2009, 102, 106105.
dc.identifier.citedreferenceH. Guan, J. Lin, B. Qiao, S. Miao, A.-Q. Wang, X. Wang, et al., AIChE J. 2017, 63, 2081.
dc.identifier.citedreferenceP. Scheiber, M. Fidler, O. Dulub, M. Schmid, U. Diebold, W. Hou, et al., Phys. Rev. Lett. 2012, 109, 136103.
dc.identifier.citedreferenceM. Setvín, U. Aschauer, P. Scheiber, Y.-F. Li, W. Hou, M. Schmid, et al., Science 2013, 341, 988.
dc.identifier.citedreferenceS. Kattel, B. Yan, J. G. Chen, P. Liu, J. Catal. 2016, 343, 115.
dc.identifier.citedreferenceA. Karelovic, P. Ruiz, J. Catal. 2013, 301, 141.
dc.identifier.citedreferenceZ. L. Zhang, A. Kladi, X. E. Verykios, J. Catal. 1994, 148, 737.
dc.identifier.citedreferenceH. Cheng, A. Selloni, Phys. Rev. B 2009, 79, 092101.
dc.identifier.citedreferenceX. Li, J. Lin, L. Li, Y. Huang, X. Pan, S. E. Collins, et al., Angew. Chem. Int. Ed. 2020, 59, 19983.
dc.identifier.citedreferenceM. J. Hülsey, G. Sun, P. Sautet, N. Yan, Angew. Chem. Int. Ed. 2021, 60, 4764.
dc.identifier.citedreferenceH. Zhai, A. N. Alexandrova, ACS Catal. 2017, 7, 1905.
dc.identifier.citedreferenceA. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, et al., J. Phys. Chem. A 1999, 103, 9573.
dc.identifier.citedreferenceA. T. Bell, Science 2003, 299, 1688.
dc.identifier.citedreferenceP. C. Jennings, S. Lysgaard, J. S. Hummelshøj, T. Vegge, T. Bligaard, Npj Comput. Mater. 2019, 5, 46.
dc.identifier.citedreferenceJ.-X. Liu, Y. Su, I. A. W. Filot, E. J. M. Hensen, J. Am. Chem. Soc. 2018, 140, 4580.
dc.identifier.citedreferenceC. Shang, Z.-P. Liu, J. Chem. Theory Comput. 2013, 9, 1838.
dc.identifier.citedreferenceD. J. Wales, J. P. K. Doye, J. Phys. Chem. A 1997, 101, 5111.
dc.identifier.citedreferenceG. G. Rondina, J. L. F. Da Silva, J. Chem. Inf. Model. 2013, 53, 2282.
dc.identifier.citedreferenceY. Sugita, Y. Okamoto, Chem. Phys. Lett. 1999, 314, 141.
dc.identifier.citedreferenceD. M. Deaven, K. M. Ho, Phys. Rev. Lett. 1995, 75, 288.
dc.identifier.citedreferenceR. B. Wexler, T. Qiu, A. M. Rappe, J. Phys. Chem. C 2019, 123, 2321.
dc.identifier.citedreferenceW. T. Wallace, R. L. Whetten, J. Phys. Chem. B 2000, 104, 10964.
dc.identifier.citedreferenceS. Kattel, P. Liu, J. G. Chen, J. Am. Chem. Soc. 2017, 139, 9739.
dc.identifier.citedreferenceC.-T. Yang, B. C. Wood, V. R. Bhethanabotla, B. Joseph, J. Phys. Chem. C 2014, 118, 26236.
dc.identifier.citedreferenceC. S. Ewing, M. J. Hartmann, K. R. Martin, A. M. Musto, S. J. Padinjarekutt, E. M. Weiss, et al., J. Phys. Chem. C 2015, 119, 2503.
dc.identifier.citedreferenceA. Beniya, S. Higashi, N. Ohba, R. Jinnouchi, H. Hirata, Y. Watanabe, Nat. Commun. 2020, 11, 1.
dc.identifier.citedreferenceG. N. Vayssilov, B. C. Gates, N. Rösch, Angew. Chem. Int. Ed. 2003, 42, 1391.
dc.identifier.citedreferenceZ. Jakub, J. Hulva, M. Meier, R. Bliem, F. Kraushofer, M. Setvin, et al., Angew. Chem. 2019, 131, 14099.
dc.identifier.citedreferenceX. Chen, X. Su, H.-Y. Su, X. Liu, S. Miao, Y. Zhao, et al., ACS Catal. 2017, 7, 4613.
dc.identifier.citedreferenceSh. K. Shaikhutdinov, R. Meyer, M. Naschitzki, M. Bäumer, H.-J. Freund, Catal. Lett. 2003, 86, 211.
dc.identifier.citedreferenceD. N. Belton, S. J. Schmieg, Surf. Sci. 1988, 202, 238.
dc.identifier.citedreferenceG. Blyholder, J. Phys. Chem. 1964, 68, 2772.
dc.identifier.citedreferenceD. Heyl, U. Rodemerck, U. Bentrup, ACS Catal. 2016, 6, 6275.
dc.identifier.citedreferenceW.-Y. Yu, G. M. Mullen, C. B. Mullins, J. Phys. Chem. C 2013, 117, 19535.
dc.identifier.citedreferenceF. R. Lucci, M. T. Darby, M. F. G. Mattera, C. J. Ivimey, A. J. Therrien, A. Michaelides, et al., J. Phys. Chem. Lett. 2016, 7, 480.
dc.identifier.citedreferenceM. J. Hülsey, B. Zhang, Z. Ma, H. Asakura, D. A. Do, W. Chen, et al., Nat. Commun. 2019, 10, 1330.
dc.identifier.citedreferenceB. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, et al., Nat. Chem. 2011, 3, 634.
dc.identifier.citedreferenceY. Kwon, T. Y. Kim, G. Kwon, J. Yi, H. Lee, J. Am. Chem. Soc. 2017, 139, 17694.
dc.identifier.citedreferenceJ. C. Matsubu, V. N. Yang, P. Christopher, J. Am. Chem. Soc. 2015, 137, 3076.
dc.identifier.citedreferenceM.-M. Millet, G. Algara-Siller, S. Wrabetz, A. Mazheika, F. Girgsdies, D. Teschner, et al., J. Am. Chem. Soc. 2019, 141, 2451.
dc.identifier.citedreferenceX. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
dc.identifier.citedreferenceJ. Liu, ACS Catal. 2017, 7, 34.
dc.identifier.citedreferenceS. C. Ammal, A. Heyden, ACS Catal. 2017, 7, 301.
dc.identifier.citedreferenceS. C. Ammal, A. Heyden, ACS Catal. 2019, 9, 7721.
dc.identifier.citedreferenceJ. Shan, M. Li, L. F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Nature 2017, 551, 605.
dc.identifier.citedreferenceH. Wang, J.-X. Liu, L. F. Allard, S. Lee, J. Liu, H. Li, et al., Nat. Commun. 2019, 10, 1.
dc.identifier.citedreferenceF. Doherty, H. Wang, M. Yang, B. R. Goldsmith, Catal. Sci. Technol. 2020, 10, 5772.
dc.identifier.citedreferenceJ. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, et al., Catal. Today 2009, 148, 221.
dc.identifier.citedreferenceC. Song, Catal. Today 2006, 115, 2.
dc.identifier.citedreferenceY. Wang, H. Arandiyan, J. Scott, K.-F. Aguey-Zinsou, R. Amal, ACS Appl. Mater. Interfaces 2018, 1, 6781.
dc.identifier.citedreferenceA. Aitbekova, L. Wu, C. J. Wrasman, A. Boubnov, A. S. Hoffman, E. D. Goodman, et al., J. Am. Chem. Soc. 2018, 140, 13736.
dc.identifier.citedreferenceL. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. W. Graham, X. Pan, et al., J. Am. Chem. Soc. 2017, 139, 14150.
dc.identifier.citedreferenceJ. Resasco, L. DeRita, S. Dai, J. P. Chada, M. Xu, X. Yan, et al., J. Am. Chem. Soc. 2020, 142, 169.
dc.identifier.citedreferenceC. Wang, X.-K. Gu, H. Yan, Y. Lin, J. Li, D. Liu, et al., ACS Catal. 2017, 7, 887.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.