Show simple item record

Geography, Host Genetics, and Cross‐Domain Microbial Networks Structure the Skin Microbiota of Fragmented Brazilian Atlantic Forest Frog Populations

dc.contributor.authorBelasen, Anat M.
dc.contributor.authorRiolo, Maria A.
dc.contributor.authorBletz, Molly C.
dc.contributor.authorLyra, Mariana L.
dc.contributor.authorToledo, L. Felipe
dc.contributor.authorJames, Timothy Y.
dc.date.accessioned2021-08-03T18:17:15Z
dc.date.available2022-08-03 14:17:13en
dc.date.available2021-08-03T18:17:15Z
dc.date.issued2021-07
dc.identifier.citationBelasen, Anat M.; Riolo, Maria A.; Bletz, Molly C.; Lyra, Mariana L.; Toledo, L. Felipe; James, Timothy Y. (2021). "Geography, Host Genetics, and Cross‐Domain Microbial Networks Structure the Skin Microbiota of Fragmented Brazilian Atlantic Forest Frog Populations." Ecology and Evolution (14): 9293-9307.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/168518
dc.description.abstractThe host‐associated microbiome plays a significant role in health. However, the roles of factors such as host genetics and microbial interactions in determining microbiome diversity remain unclear. We examined these factors using amplicon‐based sequencing of 175 Thoropa taophora frog skin swabs collected from a naturally fragmented landscape in southeastern Brazil. Specifically, we examined (1) the effects of geography and host genetics on microbiome diversity and structure; (2) the structure of microbial eukaryotic and bacterial co‐occurrence networks; and (3) co‐occurrence between microeukaryotes with bacterial OTUs known to affect growth of the fungal pathogen Batrachochytrium dendrobatidis (Bd). While bacterial alpha diversity varied by both site type and host MHC IIB genotype, microeukaryotic alpha diversity varied only by site type. However, bacteria and microeukaryote composition showed variation according to both site type and host MHC IIB genotype. Our network analysis showed the highest connectivity when both eukaryotes and bacteria were included, implying that ecological interactions may occur among domains. Lastly, anti‐Bd bacteria were not broadly negatively co‐associated with the fungal microbiome and were positively associated with potential amphibian parasites. Our findings emphasize the importance of considering both domains in microbiome research and suggest that for effective probiotic strategies for amphibian disease management, considering potential interactions among all members of the microbiome is crucial.We use a natural laboratory to examine the relationship between host genetic diversity, bacterial diversity, and microeukaryote diversity in the skin microbiome of a Brazilian frog. We find that host immunogenetic diversity is associated with variation in microbiome diversity and structure, and present results that support novel associations between microeukaryotes and bacteria on frog skin. Our results have implications for the relationships between host genetics and health mediated through microbiome diversity and structure.​
dc.publisherR Foundation for Statistical Computing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBrazil’s Atlantic Forest
dc.subject.othermicrobial networks
dc.subject.otherskin microbiome
dc.subject.otheramphibian
dc.titleGeography, Host Genetics, and Cross‐Domain Microbial Networks Structure the Skin Microbiota of Fragmented Brazilian Atlantic Forest Frog Populations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168518/1/ece37594.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168518/2/ece37594_am.pdf
dc.identifier.doi10.1002/ece3.7594
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceMuletz, C. R., Myers, J. M., Domangue, R. J., Herrick, J. B., & Harris, R. N. ( 2012 ). Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biological Conservation, 152, 119 – 126. https://doi.org/10.1016/j.biocon.2012.03.022
dc.identifier.citedreferenceMyers, J. M., Ramsey, J. P., Blackman, A. L., Nichols, A. E., Minbiole, K. P. C., & Harris, R. N. ( 2012 ). Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: The combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. Journal of Chemical Ecology, 38, 958 – 965. https://doi.org/10.1007/s10886‐012‐0170‐2
dc.identifier.citedreferenceNewsham, K. K., Fitter, A. H., & Watkinson, A. R. ( 1995 ). Arbuscular Mycorrhiza Protect an Annual Grass from Root Pathogenic Fungi in the Field. Journal of Ecology, 83, 991. https://doi.org/10.2307/2261180
dc.identifier.citedreferenceOlson, D. H., Aanensen, D. M., Ronnenberg, K. L., Powell, C. I., Walker, S. F., Bielby, J., Garner, T. W. J., Weaver, G., & Fisher, M. C. ( 2013 ). Mapping the global emergence of batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One, 8, 747 – 749. https://doi.org/10.1371/journal.pone.0056802
dc.identifier.citedreferencePetersen, J. ( 1891 ). Die Theorie der regulären graphs. Acta Math., 15, 193 – 220. https://doi.org/10.1007/BF02392606
dc.identifier.citedreferencePinto, A. J., & Raskin, L. ( 2012 ). PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One, 7, e43093. https://doi.org/10.1371/journal.pone.0043093
dc.identifier.citedreferencePiovia‐Scott, J., Rejmanek, D., Woodhams, D. C., Worth, S. J., Kenny, H., McKenzie, V., Lawler, S. P., & Foley, J. E. ( 2017 ). Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microbial Ecology, 74, 217 – 226. https://doi.org/10.1007/s00248‐016‐0916‐4
dc.identifier.citedreferenceR Core Team ( 2018 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
dc.identifier.citedreferenceRebollar, E. A., Simonetti, S. J., Shoemaker, W. R., & Harris, R. N. ( 2016 ). Direct and indirect horizontal transmission of the antifungal probiotic bacterium Janthinobacterium lividum on green frog ( Lithobates clamitans ) tadpoles. Applied and Environment Microbiology, 82, 2457 – 2466. https://doi.org/10.1128/AEM.04147‐15
dc.identifier.citedreferenceRowley, J. J. L., Gleason, F. H., Andreou, D., Marshall, W. L., Lilje, O., & Gozlan, R. ( 2013 ). Impacts of mesomycetozoean parasites on amphibian and freshwater fish populations. Fungal Biol. Rev., 27, 100 – 111. https://doi.org/10.1016/j.fbr.2013.09.002
dc.identifier.citedreferenceScheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A. N., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., & De la Riva, I. ( 2019 ) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science (80‐. ). 363, 1459 – 1463. https://doi.org/10.1126/science.aav0379
dc.identifier.citedreferenceSeyedmousavi, S., Guillot, J., Tolooe, A., & Verweij, P. E. ( 2015 ). Neglected fungal zoonoses: Hidden threats to man and animals. Clinical Microbiology & Infection, 21, 416 – 425. https://doi.org/10.1016/j.cmi.2015.02.031
dc.identifier.citedreferenceSong, Z., Schlatter, D., Gohl, D. M., & Kinkel, L. L. ( 2018 ). Run‐to‐run sequencing variation can introduce taxon‐specific bias in the evaluation of fungal microbiomes. Phytobiomes J., 2, 165 – 170. https://doi.org/10.1094/PBIOMES‐09‐17‐0041‐R
dc.identifier.citedreferenceStoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M. D. M., Breiner, H. W., & Richards, T. A. ( 2010 ). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19, 21 – 31. https://doi.org/10.1111/j.1365‐294X.2009.04480.x
dc.identifier.citedreferenceSuguio, K., Angulo, R. J., Carvalho, A. M., Corrêa, I. C. S., Tomazeli, L. J., Willwock, J. A., & Vital, H. ( 2005 ). Paleoníveis do mar e paleolinhas da costa. In Quaternário do Brasil, p. 378.
dc.identifier.citedreferenceTilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. ( 1994 ). Habitat destruction and the extinction debt. Nature, 371, 65 – 66. https://doi.org/10.1038/371065a0
dc.identifier.citedreferencevan Rossum, G. ( 1995 ). Python Tutorial, Technical Report CS‐R9526.
dc.identifier.citedreferenceVarela, B. J., Lesbarrères, D., Ibáñez, R., & Green, D. M. ( 2018 ). Environmental and host effects on skin bacterial community composition in Panamanian frogs. Frontiers in Microbiology, 9, 1 – 13. https://doi.org/10.3389/fmicb.2018.00298
dc.identifier.citedreferenceVences, M., Lyra, M. L., Kueneman, J. G., Bletz, M. C., Archer, H. M., Canitz, J., Handreck, S., Randrianiaina, R. D., Struck, U., Bhuju, S., & Jarek, M. ( 2016 ). Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat., 103, 25. https://doi.org/10.1007/s00114‐016‐1348‐1
dc.identifier.citedreferenceVětrovský, T., & Baldrian, P. ( 2013 ). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One, 8, 1 – 10. https://doi.org/10.1371/journal.pone.0057923
dc.identifier.citedreferenceVoyles, J., Woodhams, D. C., Saenz, V., Byrne, A. Q., Perez, R., Rios‐Sotelo, G., Ryan, M. J., Bletz, M. C., Sobell, F. A., McLetchie, S., & Reinert, L. ( 2018 ) Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science (80‐. ). 359, 1517 – 1519. https://doi.org/10.1126/science.aao4806
dc.identifier.citedreferenceVredenburg, V. T., Briggs, C. J., & Harris, R. N. ( 2011 ). Host‐pathogen dynamics of amphibian chytridiomycosis: The role of the skin microbiome in health and disease. In L. Olson, E. Choffnes, D. Relman, & L. Pray (Eds.), Fungal diseases: An emerging threat to human, animal, and plant health (pp. 342 – 355 ). National Academy Press.
dc.identifier.citedreferenceWalke, J. B., Becker, M. H., Loftus, S. C., House, L. L., Cormier, G., Jensen, R. V., & Belden, L. K. ( 2014 ). Amphibian skin may select for rare environmental microbes. ISME Journal, 8, 1 – 11. https://doi.org/10.1038/ismej.2014.77
dc.identifier.citedreferenceWalke, J. B., & Belden, L. K. ( 2016 ). Harnessing the microbiome to prevent fungal infections: Lessons from amphibians. PLoS Pathogens, 12, 6 – 11. https://doi.org/10.1371/journal.ppat.1005796
dc.identifier.citedreferenceWoodhams, D. C., Alford, R. A., Antwis, R. E., Archer, H., Becker, M. H., Belden, L. K., Bell, S. C., Bletz, M., Daskin, J. H., Davis, L. R., & Flechas, S. V. ( 2015 ). Antifungal isolates database of amphibian skin‐associated bacteria and function against emerging fungal pathogens. Ecology, 96, 595. https://doi.org/10.1890/14‐1837.1
dc.identifier.citedreferenceWoodhams, D. C., Brandt, H., Baumgartner, S., Kielgast, J., Küpfer, E., Tobler, U., Davis, L. R., Schmidt, B. R., Bel, C., Hodel, S., & Knight, R. ( 2014 ). Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One, 9, e96375. https://doi.org/10.1371/journal.pone.0096375
dc.identifier.citedreferenceGraham, A. L. ( 2008 ). Ecological rules governing helminth microparasite coinfection. Proceedings of the National Academy of Sciences, 105, 566 – 570. https://doi.org/10.1073/pnas.0707221105
dc.identifier.citedreferenceAbarca, J. G., Vargas, G., Zuniga, I., Whitfield, S. M., Woodhams, D. C., Kerby, J., McKenzie, V. J., Murillo‐Cruz, C., & Pinto‐Tomás, A. A. ( 2018 ). Assessment of bacterial communities associated with the skin of Costa Rican amphibians at La Selva Biological Station. Frontiers in Microbiology, 9, 1 – 12. https://doi.org/10.3389/fmicb.2018.02001
dc.identifier.citedreferenceAdair, K. L., & Douglas, A. E. ( 2017 ). Making a microbiome: The many determinants of host‐associated microbial community composition. Current Opinion in Microbiology, 35, 23 – 29. https://doi.org/10.1016/j.mib.2016.11.002
dc.identifier.citedreferenceAllentoft, M. E., & O’Brien, J. ( 2010 ). Global amphibian declines, loss of genetic diversity and fitness: A review. Diversity, 2, 47 – 71. https://doi.org/10.3390/d2010047
dc.identifier.citedreferenceAmend, A. S., Seifert, K. A., & Bruns, T. D. ( 2010 ). Quantifying microbial communities with 454 pyrosequencing: Does read abundance count? Molecular Ecology, 19, 5555 – 5565. https://doi.org/10.1111/j.1365‐294X.2010.04898.x
dc.identifier.citedreferenceAntwis, R. E., Haworth, R. L., Engelmoer, D. J. P., Ogilvy, V., Fidgett, A. L., & Preziosi, R. F. ( 2014 ). Ex situ diet influences the bacterial community associated with the skin of red‐eyed tree frogs (agalychnis callidryas). PLoS One, 9, 1 – 8. https://doi.org/10.1371/journal.pone.0085563
dc.identifier.citedreferenceBadali, H., Bonifaz, A., Barrón‐Tapia, T., Vázquez‐González, D., Estrada‐Aguilar, L., Cavalcante Oliveira, N. M., Sobral Filho, J. F., Guarro, J., Meis, J. F. G. M., & De Hoog, G. S. ( 2010 ). Rhinocladiella aquaspersa, proven agent of verrucous skin infection and a novel type of chromoblastomycosis. Medical Mycology, 48, 696 – 703. https://doi.org/10.3109/13693780903471073
dc.identifier.citedreferenceBarribeau, S. M., Villinger, J., & Waldman, B. ( 2012 ). Ecological immunogenetics of life‐history traits in a model amphibian. Biology Letters, 8, 405 – 407. https://doi.org/10.1098/Rsbl.2011.0845
dc.identifier.citedreferenceBecker, M. H., Walke, M. H., Murrill, L., Woodhams, D. C., Reinert, L. K., Rollins‐Smith, L. A., Burzynski, E. A., Umile, T. P., Minbiole, K. P. & Belden, L. K. ( 2015 ). Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis. Molecular Ecology, 24, 1628 – 1641. https://doi.org/10.1111/mec.13135
dc.identifier.citedreferenceBelasen, A. M., Bletz, M. C., Leite, D. da S., Toledo, L. F. & James, T. Y. ( 2019 ). Long‐term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front. Ecol. Evol., 6, 1 – 12. https://doi.org/10.3389/fevo.2018.00236
dc.identifier.citedreferenceBelden, L. K., Hughey, M. C., Rebollar, E. A., Umile, T. P., Loftus, S. C., Burzynski, E. A., Minbiole, K. P., House, L. L., Jensen, R. V., Becker, M. H., & Walke, J. B. ( 2015 ). Panamanian frog species host unique skin bacterial communities. Frontiers in Microbiology, 6, 1 – 21. https://doi.org/10.3389/fmicb.2015.01171
dc.identifier.citedreferenceBell, R. C., Brasileiro, C. A., Haddad, C. F. B., & Zamudio, K. R. ( 2012 ). Evolutionary history of Scinax treefrogs on land‐bridge islands in south‐eastern Brazil. Journal of Biogeography, 39, 1733 – 1742. https://doi.org/10.1111/j.1365‐2699.2012.02708.x
dc.identifier.citedreferenceBenjamini, Y., Hochberg, Y., & Benjamini, Y. H. Y. ( 1995 ). Benjamini and Y FDR.pdf. Journal of the Royal Statistical Society: Series B, 57, 289 – 300. https://doi.org/10.2307/2346101
dc.identifier.citedreferenceBenson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., Hua, K., & Kachman, S. D. ( 2010 ). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences, 107, 18933 – 18938. https://doi.org/10.1073/pnas.1007028107
dc.identifier.citedreferenceBesag, J., & Clifford, P. ( 1989 ). Generalized Monte Carlo significance tests. Biometrika, 76, 633 – 642. https://doi.org/10.1093/biomet/76.4.633
dc.identifier.citedreferenceBlekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., Spector, T. D., Keinan, A., Ley, R. E., Gevers, D., & Clark, A. G. ( 2015 ). Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 16, 1 – 12. https://doi.org/10.1186/s13059‐015‐0759‐1
dc.identifier.citedreferenceBletz, M. C., Archer, H., Harris, R. N., McKenzie, V. J., Rabemananjara, F. C. E., Rakotoarison, A., & Vences, M. ( 2017 ). Host ecology rather than host phylogeny drives amphibian skin microbial community structure in the biodiversity hotspot of Madagascar. Frontiers in Microbiology, 8, 1 – 14. https://doi.org/10.3389/fmicb.2017.01530
dc.identifier.citedreferenceBletz, M. C., Goedbloed, D. J., Sanchez, E., Reinhardt, T., Tebbe, C. C., Bhuju, S., Geffers, R., Jarek, M., Vences, M., & Steinfartz, S. ( 2016 ). Amphibian gut microbiota shifts differentially in community structure but converges on habitat‐specific predicted functions. Nature Communications, 7, 1 – 12. https://doi.org/10.1038/ncomms13699
dc.identifier.citedreferenceBletz, M. C., Loudon, A. H., Becker, M. H., Bell, S. C., Woodhams, D. C., Minbiole, K. P. C., & Harris, R. N. ( 2013 ). Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecology Letters, 16, 807 – 820. https://doi.org/10.1111/ele.12099
dc.identifier.citedreferenceBletz, M. C., Vences, M., Sabino‐Pinto, J., Taguchi, Y., Shimizu, N., Nishikawa, K., & Kurabayashi, A. ( 2017 ). Cutaneous microbiota of the Japanese giant salamander (Andrias japonicus), a representative of an ancient amphibian clade. Hydrobiologia, 795, 153 – 167. https://doi.org/10.1007/s10750‐017‐3126‐2
dc.identifier.citedreferenceBokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., & Caporaso, J. G. ( 2013 ). Quality‐filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10, 57 – 59. https://doi.org/10.1038/nmeth.2276
dc.identifier.citedreferenceBrucker, R. M., Baylor, C. M., Walters, R. L., Lauer, A., Harris, R. N., & Minbiole, K. P. C. ( 2008 ). The identification of 2,4‐diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander plethodon cinereus. Journal of Chemical Ecology, 34, 39 – 43. https://doi.org/10.1007/s10886‐007‐9352‐8
dc.identifier.citedreferenceCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., & Huttley, G. A. ( 2010 ). QIIME allows analysis of high‐throughput community sequencing data. Nature Methods, 7, 335 – 336. https://doi.org/10.1038/nmeth.f.303
dc.identifier.citedreferenceCarvalho, T., Becker, C. G., & Toledo, L. F. ( 2017 ). Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proceedings of the Royal Society B‐Biological Sciences, 284, 20162254. https://doi.org/10.1098/rspb.2016.2254
dc.identifier.citedreferenceCheng, T. L. et al ( 2017 ). Efficacy of a probiotic bacterium to treat bats affected by the disease white‐nose syndrome. Journal of Applied Ecology, 54, 701 – 708. https://doi.org/10.1111/1365‐2664.12757
dc.identifier.citedreferenceChessel, D., Dufour, A. B., & Thioulouse, J. ( 2004 ). The ade4 package‐I‐ One‐table methods. R News, 4, 5 – 10.
dc.identifier.citedreferenceDeveau, A., Bonito, G., Uehling, J., Paoletti, M., Becker, M., Bindschedler, S., Hacquard, S., Hervé, V., Labbé, J., Lastovetsky, O. A., & Mieszkin, S. ( 2018 ). Bacterial‐fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiology Reviews, 42, 335 – 352. https://doi.org/10.1093/femsre/fuy008
dc.identifier.citedreferenceDray, S., & Dufour, A. B. ( 2007 ). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22, 1 – 20.
dc.identifier.citedreferenceDray, S., Dufour, A. B., & Chessel, D. ( 2007 ). The ade4 package‐II: Two‐table and K‐table methods. R News, 7, 47 – 52.
dc.identifier.citedreferenceDuryea, M. C., Zamudio, K. R., & Brasileiro, C. A. ( 2008 ). Characterization of microsatellite markers for Thoropa taophora (Anura, Cycloramphidae), a frog endemic to the Brazilian Atlantic rain forest. Molecular Ecology Resources, 8, 663 – 665. https://doi.org/10.1111/j.1471‐8286.2007.02039.x
dc.identifier.citedreferenceDuryea, M. C., Zamudio, K. R., & Brasileiro, C. A. ( 2015 ). Vicariance and marine migration in continental island populations of a frog endemic to the Atlantic Coastal forest. Heredity (Edinb), 115, 225 – 234. https://doi.org/10.1038/hdy.2015.31
dc.identifier.citedreferenceEdgar, R. C. ( 2016 ) UCHIME2: improved chimera prediction for amplicon sequencing. https://doi.org/10.1101/074252
dc.identifier.citedreferenceFosdick, B. K., Larremore, D. B., Nishimura, J., & Ugander, J. ( 2018 ). Configuring random graph models with fixed degree sequences. SIAM Review, 60, 315 – 355. https://doi.org/10.1137/16M1087175
dc.identifier.citedreferenceFrey‐Klett, P., & Garbaye, J. ( 2005 ). Mycorrhiza Helper Bacteria: A promising model for the genomic analysis of fungal‐ bacterial interactions. New Phytologist, 168, 4 – 8.
dc.identifier.citedreferenceGao, F.‐K., Dai, C.‐C., & Liu, X.‐Z. ( 2010 ). Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 4, 1346 – 1351.
dc.identifier.citedreferenceGhadban, G. S. ( 2002 ). Probiotics in broiler production ‐ A review. Archiv für Geflugelkunde, 66, 49 – 58.
dc.identifier.citedreferenceGleason, F. H., Carney, L. T., Lilje, O., & Glockling, S. L. ( 2012 ). Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecology, 5, 651 – 656. https://doi.org/10.1016/j.funeco.2012.05.003
dc.identifier.citedreferenceGram, L., Melchiorsen, J., Spanggaard, B., Huber, I., Al GET, & Icrobiol APPLENM. ( 1999 ). AH2, a possible probiotic treatment of fish. Applied and Environment Microbiology, 65, 969 – 973.
dc.identifier.citedreferenceGriffiths, S. M., Harrison, X. A., Weldon, C., Wood, M. D., Pretorius, A., Hopkins, K., Fox, G., Preziosi, R. F., & Antwis, R. E. ( 2018 ). Genetic variability and ontogeny predict microbiome structure in a disease‐challenged montane amphibian. ISME Journal, 1 – 12. https://doi.org/10.1038/s41396‐018‐0167‐0
dc.identifier.citedreferenceHarris, R. N., Brucker, R. M., Walke, J. B., Becker, M. H., Schwantes, C. R., Flaherty, D. C., Lam, B. A., Woodhams, D. C., Briggs, C. J., Vredenburg, V. T., & Minbiole, K. P. ( 2009 ). Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME Journal, 3, 818 – 824. https://doi.org/10.1038/ismej.2009.27
dc.identifier.citedreferenceHarris, R. N., James, T. Y., Lauer, A., Simon, M. A., & Patel, A. ( 2006 ). Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth, 3, 53 – 56. https://doi.org/10.1007/s10393‐005‐0009‐1
dc.identifier.citedreferenceHarris, R. N., Lauer, A., Simon, M. A., Banning, J. L., & Alford, R. A. ( 2009 ). Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Diseases of Aquatic Organisms, 83, 11 – 16. https://doi.org/10.3354/dao02004
dc.identifier.citedreferenceHernández‐Gómez, O., Briggler, J. T., & Williams, R. N. ( 2018 ). Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Molecular Ecology, 27, 1915 – 1929. https://doi.org/10.1111/mec.14500
dc.identifier.citedreferenceHernández‐Gómez, O., Hoverman, J. T., & Williams, R. N. ( 2017 ). Cutaneous microbial community variation across populations of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). Frontiers in Microbiology, 8, 1 – 16. https://doi.org/10.3389/fmicb.2017.01379
dc.identifier.citedreferenceHill, W. A., Newman, S. J., Craig, L., Carter, C., Czarra, J., & Brown, J. P. ( 2010 ). Diagnosis of Aeromonas hydrophila, Mycobacterium species, and Batrachochytrium dendrobatidis in an African Clawed Frog (Xenopus laevis). Journal of the American Association for Laboratory Animal Science, 49, 215 – 220.
dc.identifier.citedreferenceHoffmann, A. R., Patterson, A. P., Diesel, A., Lawhon, S. D., Ly, H. J., Stephenson, C. E., Mansell, J., Steiner, J. M., Dowd, S. E., Olivry, T., & Suchodolski, J. S. ( 2014 ). The skin microbiome in healthy and allergic dogs. PLoS One, 9, e3197. https://doi.org/10.1371/journal.pone.003197
dc.identifier.citedreferenceHoller, E., Butzhammer, P., Schmid, K., Hundsrucker, C., Koestler, J., Peter, K., Zhu, W., Sporrer, D., Hehlgans, T., Kreutz, M., & Holler, B. ( 2014 ). Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: Loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft‐versus‐host disease. Biology of Blood and Marrow Transplantation, 20, 640 – 645. https://doi.org/10.1016/j.bbmt.2014.01.030
dc.identifier.citedreferenceHunter, J. D. ( 2007 ). Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng., 9, 90 – 95.
dc.identifier.citedreferenceHyatt, A. D., Olsen, V., Boyle, D. B., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Hero, M., Hines, H., Phillott, R., & Campbell, R. ( 2007 ). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 73, 175 – 192. https://doi.org/10.3354/dao073175
dc.identifier.citedreferenceKearns, P. J., Fischer, S., Fernández‐Beaskoetxea, S., Gabor, C. R., Bosch, J., Bowen, J. L., Tlusty, M. F., & Woodhams, D. C. ( 2017 ). Fight fungi with fungi: Antifungal properties of the amphibian mycobiome. Frontiers in Microbiology, 8, 1 – 12. https://doi.org/10.3389/fmicb.2017.02494
dc.identifier.citedreferenceKembel, S. W., Wu, M., Eisen, J. A., & Green, J. L. ( 2012 ). Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance. PLoS Computational Biology, 8, 16 – 18. https://doi.org/10.1371/journal.pcbi.1002743
dc.identifier.citedreferenceKerk, D., Gee, A., Standish, M., Wainwright, P. O., Drum, A. S., Elston, R. A., & Sogin, M. L. ( 1995 ). The rosette agent of chinook salmon (Oncorhynchus tshawytscha) is closely related to choanoflagellates, as determined by the phylogenetic analyses of its small ribosomal subunit RNA. Marine Biology, 122, 187 – 192. https://doi.org/10.1007/BF00348931
dc.identifier.citedreferenceKueneman, J. G., Bletz, M. C., McKenzie, V. J., Becker, C. G., Joseph, M. B., Abarca, J. G., Archer, H., Arellano, A. L., Bataille, A., Becker, M., & Belden, L. K. ( 2019 ). Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol., 3, 381 – 389. https://doi.org/10.1038/s41559‐019‐0798‐1
dc.identifier.citedreferenceKueneman, J. G., Parfrey, L. W., Woodhams, D. C., Archer, H. M., Knight, R., & McKenzie, V. J. ( 2014 ). The amphibian skin‐associated microbiome across species, space and life history stages. Molecular Ecology, 23, 1238 – 1250. https://doi.org/10.1111/mec.12510
dc.identifier.citedreferenceKueneman, J. G., Weiss, S., & McKenzie, V. J. ( 2017 ). Composition of micro‐eukaryotes on the skin of the cascades frog (Rana cascadae) and patterns of correlation between skin microbes and Batrachochytrium dendrobatidis. Frontiers in Microbiology, 8, 1 – 10. https://doi.org/10.3389/fmicb.2017.02350
dc.identifier.citedreferenceKueneman, J. G., Woodhams, D. C., Van Treuren, W., Archer, H. M., Knight, R., & McKenzie, V. J. ( 2016 ). Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME Journal, 10, 934 – 944. https://doi.org/10.1038/ismej.2015.168
dc.identifier.citedreferenceLam, B. A., Walke, J. B., Vredenburg, V. T., & Harris, R. N. ( 2010 ). Proportion of individuals with anti‐Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biological Conservation, 143, 529 – 531. https://doi.org/10.1016/j.biocon.2009.11.015
dc.identifier.citedreferenceLips, K., Brem, F., Brenes, R., Reeve, J. D., Alford, R. A., Voyles, J., Carey, C., Livo, L., Pessier, A. P., & Collins, J. P. ( 2006 ). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences, 103, 3165 – 3170. https://doi.org/10.1073/pnas.0506889103
dc.identifier.citedreferenceMarietta, E., Rishi, A., & Taneja, V. ( 2015 ). Immunogenetic control of the intestinal microbiota. Immunology, 145, 313 – 322. https://doi.org/10.1111/imm.12474
dc.identifier.citedreferenceMcKenzie, V. J., Bowers, R. M., Fierer, N., Knight, R., & Lauber, C. L. ( 2012 ). Co‐habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME Journal, 6, 588 – 596. https://doi.org/10.1038/ismej.2011.129
dc.identifier.citedreferenceMuletz, C., Caruso, N. M., Fleischer, R. C., McDiarmid, R. W., & Lips, K. R. ( 2014 ). Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon salamanders: 1957–2011. PLoS One, 9, 103728. https://doi.org/10.1371/journal.pone.0103728
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.