Show simple item record

Circular economy framework for automobiles: Closing energy and material loops

dc.contributor.authorAguilar Esteva, Laura C.
dc.contributor.authorKasliwal, Akshat
dc.contributor.authorKinzler, Michael S.
dc.contributor.authorKim, Hyung Chul
dc.contributor.authorKeoleian, Gregory A.
dc.date.accessioned2021-09-08T14:35:18Z
dc.date.available2022-09-08 10:35:17en
dc.date.available2021-09-08T14:35:18Z
dc.date.issued2021-08
dc.identifier.citationAguilar Esteva, Laura C.; Kasliwal, Akshat; Kinzler, Michael S.; Kim, Hyung Chul; Keoleian, Gregory A. (2021). "Circular economy framework for automobiles: Closing energy and material loops." Journal of Industrial Ecology 25(4): 877-889.
dc.identifier.issn1088-1980
dc.identifier.issn1530-9290
dc.identifier.urihttps://hdl.handle.net/2027.42/169282
dc.description.abstractCorporations, including automotive manufacturers, are increasingly exploring extended circular economy strategies as a means to enhance the sustainability of their products. The circular economy paradigm focuses on reducing nonrenewable materials and energy, promoting renewable feedstocks and energy, and keeping products/materials in use across the life cycle of a system. As such, life cycle environmental burdens associated with vehicle manufacturing, use, and disposal could potentially be reduced through circular economy strategies; however, no such comprehensive circular economy framework currently exists for the automotive industry. We develop the first circular economy schematic of automobiles, derived from the Ellen MacArthur Foundation’s framework. Further, we characterize the current automotive circular economy using metrics of renewable energy and recycled materials. Specifically, for current U.S. average sedans, we find that internal combustion engine vehicles (ICEVs) use ∼6% renewable life cycle primary energy and 27% recycled materials; for battery electric vehicles (BEVs), these measures are ∼8% and 21%, respectively. On a vehicle‐miles‐traveled basis, BEVs use ∼47% less nonrenewable life cycle primary energy than ICEVs, highlighting the importance of electrification as a strategy for automotive manufacturers to reduce environmental burdens. Our proposed circular economy framework is then applied to Ford Motor Company’s sustainability programs and initiatives as an example. This schematic aims to provide a starting point for the automotive industry to operationalize circular economy strategies, the application of which could advance its overall sustainability performance.
dc.publisherOak Ridge National Lab
dc.publisherWiley Periodicals, Inc.
dc.subject.othercircular economy
dc.subject.othermaterials
dc.subject.othersustainability
dc.subject.otherautomobiles
dc.subject.otherenergy
dc.subject.otherindustrial ecology
dc.titleCircular economy framework for automobiles: Closing energy and material loops
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169282/1/jiec13088-sup-0001-SuppInfoS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169282/2/jiec13088.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169282/3/jiec13088_am.pdf
dc.identifier.doi10.1111/jiec.13088
dc.identifier.sourceJournal of Industrial Ecology
dc.identifier.citedreferenceNunes, B., & Bennett, D. ( 2010 ). Green operations initiatives in the automotive industry: An environmental reports analysis and benchmarking study. Benchmarking: An International Journal, 17 ( 3 ), 396 – 420.
dc.identifier.citedreferenceMacPherson, N. D., Keoleian, G. A., & Kelly, J. C. ( 2012 ). Fuel economy and greenhouse gas emissions labeling for plug‐in hybrid vehicles from a life cycle perspective. Journal of Industrial Ecology, 16 ( 5 ), 761 – 773.
dc.identifier.citedreferenceMayyas, A., Qattawi, A., Omar, M., & Shan, D. ( 2012 ). Design for sustainability in automotive industry: A comprehensive review. Renewable and Sustainable Energy Reviews, 16 ( 4 ), 1845 – 1862.
dc.identifier.citedreferenceMcMillan, C. A., & Keoleian, G. A. ( 2009 ). Not all primary aluminum is created equal: Life cycle greenhouse gas emissions from 1990 to 2005. Environmental Science & Technology, 43 ( 5 ), 1571 – 1577.
dc.identifier.citedreferenceMeloni, M., Souchet, F., & Sturges, D. ( 2018 ). Circular consumer electronics: An initial exploration. Cowes, UK: Ellen MacArthur Foundation. Retrieved from https://www.ellenmacarthurfoundation.org/assets/downloads/Circular-Consumer-Electronics-2704.pdf
dc.identifier.citedreferenceNijland, H., & van Meerkerk, J. ( 2017 ). Mobility and environmental impacts of car sharing in the Netherlands. Environmental Innovation and Societal Transitions, 23, 84 – 91.
dc.identifier.citedreferenceNyström, T. ( 2019 ). Adaptive design for circular business models in the automotive manufacturing industry (University of Gothenburg). Retrieved from https://gupea.ub.gu.se/bitstream/2077/58784/2/gupea_2077_58784_2.pdf
dc.identifier.citedreferenceOrsato, R. J., & Wells, P. ( 2007 ). The automobile industry & sustainability. Journal of Cleaner Production, 15 ( 11–12 ), 989 – 993. https://doi.org/10.1016/j.jclepro.2006.05.035
dc.identifier.citedreferencePiecyk, M., Browne, M., Whiteing, A., & McKinnon, A. ( 2015 ). Green logistics: Improving the environmental sustainability of logistics. London, UK: Kogan Page Publishers.
dc.identifier.citedreferenceRabobank. ( 2014 ). Circle scan: Current state and future vision, automotive sector. Retrieved from https://www.rabobank.com/nl/images/ce-rabobank-automotive-circle-scan.pdf
dc.identifier.citedreferenceRamoni, M. O., & Zhang, H.‐C. ( 2013 ). End‐of‐life (EOL) issues and options for electric vehicle batteries. Clean Technologies and Environmental Policy, 15 ( 6 ), 881 – 891.
dc.identifier.citedreferenceSaidani, M., Yannou, B., Leroy, Y., & Cluzel, F. ( 2018 ). Heavy vehicles on the road towards the circular economy: Analysis and comparison with the automotive industry. Resources, Conservation and Recycling, 135, 108 – 122.
dc.identifier.citedreferenceSakai, S., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., Rotter, V. S., … Li, J. ( 2014 ). An international comparative study of end‐of‐life vehicle (ELV) recycling systems. Journal of Material Cycles and Waste Management, 16 ( 1 ), 1 – 20.
dc.identifier.citedreferenceSassanelli, C., Rosa, P., Rocca, R., & Terzi, S. ( 2019 ). Circular economy performance assessment methods: A systematic literature review. Journal of Cleaner Production, 229, 440 – 453.
dc.identifier.citedreferenceSims, R., Schaeffer, R., Creutzig, F., Cruz‐Núñez, X., D’Agosto, M., Dimitriu, D., … Tiwari, G. ( 2014 ). Transport. In: Climate change 2014: Mitigation of climate change. contribution of working group iii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter8.pdf
dc.identifier.citedreferenceSkszek, T., Conklin, J., Wagner, D., & Zaluzec, M. ( 2015 ). Multi‐material lightweight vehicles. US DOE, 2015 Annual Merit Review Presentation. Retrieved from https://www.energy.gov/sites/prod/files/2015/06/f24/lm072_skszek_2015_o.pdf
dc.identifier.citedreferenceSmith, V. M., & Keoleian, G. A. ( 2004 ). The value of remanufactured engines: Life‐cycle environmental and economic perspectives. Journal of Industrial Ecology, 8 ( 1‐2 ), 193 – 221.
dc.identifier.citedreferenceU.S. Energy Information Administration. ( 2012 ). Washington renewable energy profile 2010. Retrieved from https://www.eia.gov/renewable/state/Washington/
dc.identifier.citedreferenceU.S. Energy Information Administration. ( 2016 ). International energy outlook 2016 with projections to 2040. Retrieved from https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
dc.identifier.citedreferenceU.S. Energy Information Administration. ( 2020 ). Washington net electricity generation by source, Retrieved from https://www.eia.gov/state/?sid=WA#tabs-4
dc.identifier.citedreferenceU.S. Environmental Protection Agency. ( 2019 ). SmartWay. Retrieved from https://www.epa.gov/smartway
dc.identifier.citedreferenceVermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., & Vandecasteele, C. ( 2011 ). Automotive shredder residue (ASR): Reviewing its production from end‐of‐life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. Journal of Hazardous Materials, 190 ( 1–3 ), 8 – 27.
dc.identifier.citedreferenceWalker, S., Coleman, N., Hodgson, P., Collins, N., & Brimacombe, L. ( 2018 ). Evaluating the environmental dimension of material efficiency strategies relating to the circular economy. Sustainability, 10 ( 3 ), 666. https://doi.org/10.3390/su10030666
dc.identifier.citedreferenceWells, P., & Orsato, R. J. ( 2005 ). Redesigning the industrial ecology of the automobile. Journal of Industrial Ecology, 9 ( 3 ), 15 – 30.
dc.identifier.citedreferenceWorld Steel Assoication. ( 2018 ). Steel Facts. Retrieved from https://www.worldsteel.org/en/dam/jcr:aB8be93e-1d2f-4215-9143-4eba6808bf03/steelfacts_vfinal.pdf
dc.identifier.citedreferenceZheng, X., Xu, F., & Feng, L. ( 2017 ). Analysis of driving factors for extended producer responsibility by using interpretative structure modelling (ISM) and analytic network process (ANP). Sustainability, 9 ( 4 ), 1 – 17.
dc.identifier.citedreferenceZink, T., & Geyer, R. ( 2017 ). Circular economy rebound. Journal of Industrial Ecology, 21 ( 3 ), 593 – 602.
dc.identifier.citedreferenceAnair, D., Martin, J., Pinto de Moura, M. C., & Goldman, J. ( 2020 ). Ride‐hailing’s climate risks: Steering a growing industry toward a clean transportation future. Retrieved from https://www.ucsusa.org/resources/ride-hailing-climate-risks
dc.identifier.citedreferenceArgonne National Laboratory. ( 2018 ). GREET Model. Retrieved from https://greet.es.anl.gov/
dc.identifier.citedreferenceBlomsma, F., & Brennan, G. ( 2017 ). The Emergence of circular economy: A new framing around prolonging resource productivity. Journal of Industrial Ecology, 21 ( 3 ), 603 – 614. https://doi.org/10.1111/jiec.12603
dc.identifier.citedreferenceBoland, C. S., De Kleine, R., Keoleian, G. A., Lee, E. C., Kim, H. C., & Wallington, T. J. ( 2016 ). Life cycle impacts of natural fiber composites for automotive applications: Effects of renewable energy content and lightweighting. Journal of Industrial Ecology, 20 ( 1 ), 179 – 189. https://doi.org/10.1111/jiec.12286
dc.identifier.citedreferenceBoundy, R. G. ( 2019 ). Transportation energy data book: Edition 37. Oak Ridge, TN: Oak Ridge National Lab. Retrieved from https://tedb.ornl.gov/
dc.identifier.citedreferenceContreras, S. ( 2015 ). Complementing the circular economy with LCA. Retrieved from https://www.pre-sustainability.com/news/complementing-the-circular-economy-with-lca
dc.identifier.citedreferenceDe los Rios, I. C., & Charnley, F. J. S. ( 2017 ). Skills and capabilities for a sustainable and circular economy: The changing role of design. Journal of Cleaner Production, 160, 109 – 122.
dc.identifier.citedreferenceDunn, J. B., Gaines, L., Sullivan, J., & Wang, M. Q. ( 2012 ). Impact of recycling on cradle‐to‐gate energy consumption and greenhouse gas emissions of automotive lithium‐ion batteries. Environmental Science & Technology, 46 ( 22 ), 12704 – 12710.
dc.identifier.citedreferenceElgowainy, A., Han, J., Ward, J., Joseck, F., Gohlke, D., Lindauer, A., … Wallington, T. J. ( 2016 ). Cradle‐to‐grave lifecycle analysis of US light duty vehicle‐fuel pathways: A greenhouse gas emissions and economic assessment of current (2015) and future (2025‐2030) technologies. Retrieved from https://greet.es.anl.gov/publication-c2g-2016-report
dc.identifier.citedreferenceEllen MacArthur Foundation. ( 2013 ). Towards the circular economy: Economic and business rationale for an accelerated transition. Retrieved from https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf
dc.identifier.citedreferenceEllen MacArthur Foundation. ( 2017a ). A new textiles economy: Redesigning fashion’s future. Retrieved from https://www.ellenmacarthurfoundation.org/assets/downloads/publications/A-New-Textiles-Economy_Full-Report_Updated_1-12-17.pdf
dc.identifier.citedreferenceEllen MacArthur Foundation. ( 2017b ). Infographic: Circular economy system diagram. Retrieved from https://www.ellenmacarthurfoundation.org/circular-economy/concept/infographic
dc.identifier.citedreferenceEllen MacArthur Foundation. ( 2017c ). Unlocking the circular potential of the steel industry. Retrieved from https://www.ellenmacarthurfoundation.org/case-studies/new-entry
dc.identifier.citedreferenceFagnant, D. J., & Kockelman, K. M. ( 2014 ). The travel and environmental implications of shared autonomous vehicles, using agent‐based model scenarios. Transportation Research Part C: Emerging Technologies, 40, 1 – 13.
dc.identifier.citedreferenceFilho, J. ( 2016 ). Opportunities for aluminium components in automotive applications. Paper presented at Charles Hatchett Seminar, July, London, UK. Retrieved from http://www.charles-hatchett.com/public/images/documents/2016/2016-CHA-Seminar-Presentation-Filho.pdf
dc.identifier.citedreferenceFord Motor Company. ( 2019 ). Our future is in motion: Sustainability report 2018/19. Dearborn, MI: Author.
dc.identifier.citedreferenceGalevsky, G. V., Rudneva, V. V., & Aleksandrov, V. S. ( 2018 ). Current state of the world and domestic aluminium production and consumption. IOP Conference Series: Materials Science and Engineering, 411, 1 – 6. https://doi.org/10.1088/1757-899x/411/1/012017
dc.identifier.citedreferenceGarche, J., Moseley, P. T., & Karden, E. ( 2015 ). Lead–acid batteries for hybrid electric vehicles and battery electric vehicles. In B. Scrosati, J. Garche, & W. Tillmetz (Eds.), Advances in battery technologies for electric vehicles (pp. 75 – 101 ). Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/C2014-0-02665-2
dc.identifier.citedreferenceGawron, J. H., Keoleian, G. A., De Kleine, R. D., Wallington, T. J., & Kim, H. C. ( 2018 ). Life cycle assessment of connected and automated vehicles: Sensing and computing subsystem and vehicle level effects. Environmental Science & Technology, 52 ( 5 ), 3249 – 3256. https://doi.org/10.1021/acs.est.7b04576
dc.identifier.citedreferenceGeneral Motors. ( 2019 ). Transformation in progress: 2018 Sustainability Report. Detroit, MI: Author
dc.identifier.citedreferenceGraedel, T. E., Allenby, B. R., & Linhart, P. B. ( 1993 ). Implementing industrial ecology. IEEE Technology and Society Magazine, 12 ( 1 ), 18 – 26.
dc.identifier.citedreferenceGreenblatt, J. B., & Shaheen, S. ( 2015 ). Automated vehicles, on‐demand mobility, and environmental impacts. Current Sustainable/Renewable Energy Reports, 2 ( 3 ), 74 – 81.
dc.identifier.citedreferenceGroupe Renault. ( 2019 ). Circular economy. Retrieved from https://group.renault.com/en/our-commitments/respect-for-the-environment/circular-economy/
dc.identifier.citedreferenceHall, A. ( 2009 ). Ford researchers look to Mother Nature for clues on how to create greener, lighter plastics. Retrieved from https://www.dbusiness.com/people/ford-researchers-look-to-mother-nature-for-clues-on-how-to-create-greener-lighter-plastics/
dc.identifier.citedreferenceHawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. ( 2013 ). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17 ( 1 ), 53 – 64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
dc.identifier.citedreferenceHertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., … Tu, Q. ( 2019 ). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 14 ( 4 ), 043004.
dc.identifier.citedreferenceInternational Energy Agency. ( 2019 ). Energy efficiency: Transport. The global exchange for energy efficiency policies, data and impacts. Retrieved from https://web.archive.org/web/20191119200859/ https://www.iea.org/topics/energyefficiency/transport/#close
dc.identifier.citedreferenceJittrapirom, P., Caiati, V., Feneri, A.‐M., Ebrahimigharehbaghi, S., González, M. J. A., & Narayan, J. ( 2017 ). Mobility as a service: A critical review of definitions, assessments of schemes, and key challenges. Urban Planning, 2 ( 2 ), 13 – 25.
dc.identifier.citedreferenceJody, B. J., Daniels, E. J., Duranceau, C. M., Pomykala, J. A., & Spangenberger, J. S. ( 2011 ). End‐of‐life vehicle recycling : State of the art of resource recovery from shredder residue. https://doi.org/10.2172/1010492
dc.identifier.citedreferenceKasliwal, A., Furbush, N. J., Gawron, J. H., McBride, J. R., Wallington, T. J., De Kleine, R. D., … Keoleian, G. A. ( 2019 ). Role of flying cars in sustainable mobility. Nature Communications, 10 ( 1 ), 1555. https://doi.org/10.1038/s41467-019-09426-0
dc.identifier.citedreferenceKelly, S., & Apelian, D. ( 2018 ). Automotive aluminum recycling at end of life: A grave‐to‐gate analysis. Retrieved from http://www.drivealuminum.org/wp-content/uploads/2016/06/Final-Report-Automotive-Aluminum-Recycling-at-End-of-Life-A-Grave-to-Gate-Analysis.pdf
dc.identifier.citedreferenceKeoleian, G. A., Kar, K., & Manion, M. M. ( 1997 ). Industrial ecology of the automobile : A life cycle perspective. Warrendale, PA: Society of Automotive Engineers.
dc.identifier.citedreferenceKeoleian, G. A., & Sullivan, J. L. ( 2012 ). Materials challenges and opportunities for enhancing the sustainability of automobiles. MRS Bulletin, 37 ( 4 ), 365 – 373.
dc.identifier.citedreferenceKim, H.‐J., Raichur, V., & Skerlos, S. J. ( 2008 ). Economic and Environmental Assessment of Automotive Remanufacturing: Alternator Case Study. In Proceedings of the ASME 2008 International Manufacturing Science and Engineering Conference Collocated with the 3rd JSME/ASME International Conference on Materials and Processing (pp. 33 – 40 ). New York, NY: ASME.. Retrieved from https://doi.org/10.1115/MSEC_ICMP2008-72490
dc.identifier.citedreferenceKim, H. C., Keoleian, G. A., Grande, D. E., & Bean, J. C. ( 2003 ). Life cycle optimization of automobile replacement: Model and application. Environmental Science & Technology, 37 ( 23 ), 5407 – 5413.
dc.identifier.citedreferenceKim, H. C., & Wallington, T. J. ( 2013 ). Life‐cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: Review and harmonization. Environmental Science & Technology, 47 ( 12 ), 6089 – 6097. https://doi.org/10.1021/es3042115
dc.identifier.citedreferenceKim, H., McMillan, C., Keoleian, G. A., & Skerlos, S. J. ( 2010 ). Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high‐strength steel. Journal of Industrial Ecology, 14 ( 6 ), 929 – 946.
dc.identifier.citedreferenceKorhonen, J., Honkasalo, A., & Seppälä, J. ( 2018 ). Circular economy: The concept and its limitations. Ecological Economics, 143, 37 – 46.
dc.identifier.citedreferenceLangholtz, M. H., Stokes, B. J., & Eaton, L. M. ( 2016 ). 2016 Billion‐ton report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstock (pp. 1 – 411 ). Oak Ridge, TN: Oak Ridge National Laboratory.
dc.identifier.citedreferenceLøvik, A. N., Modaresi, R., & Müller, D. B. ( 2014 ). Long‐term strategies for increased recycling of automotive aluminum and its alloying elements. Environmental Science & Technology, 48 ( 8 ), 4257 – 4265.
dc.identifier.citedreferenceLuk, J. M., Kim, H. C., De Kleine, R., Wallington, T. J., & MacLean, H. L. ( 2017 ). Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains. Environmental Science & Technology, 51 ( 15 ), 8215 – 8228.
dc.identifier.citedreferenceMachado, C. A. S., de Salles Hue, N. P. M., Berssaneti, F. T., & Quintanilha, J. A. ( 2018 ). An overview of shared mobility. Sustainability, 10 ( 12 ), 4342.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.