Show simple item record

Melatonin induces Nrf2‐HO‐1 reprogramming and corrections in hepatic core clock oscillations in Non‐alcoholic fatty liver disease

dc.contributor.authorJoshi, Apeksha
dc.contributor.authorUpadhyay, Kapil K.
dc.contributor.authorVohra, Aliasgar
dc.contributor.authorShirsath, Kavita
dc.contributor.authorDevkar, Ranjitsinh
dc.date.accessioned2021-09-08T14:35:28Z
dc.date.available2022-10-08 10:35:26en
dc.date.available2021-09-08T14:35:28Z
dc.date.issued2021-09
dc.identifier.citationJoshi, Apeksha; Upadhyay, Kapil K.; Vohra, Aliasgar; Shirsath, Kavita; Devkar, Ranjitsinh (2021). "Melatonin induces Nrf2‐HO‐1 reprogramming and corrections in hepatic core clock oscillations in Non‐alcoholic fatty liver disease." The FASEB Journal (9): n/a-n/a.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/169287
dc.description.abstractMelatonin pleiotropically regulates physiological events and has a putative regulatory role in the circadian clock desynchrony‐mediated Non‐alcoholic fatty liver disease (NAFLD). In this study, we investigated perturbations in the hepatic circadian clock gene, and Nrf2‐HO‐1 oscillations in conditions of high‐fat high fructose (HFHF) diet and/or jet lag (JL)‐mediated NAFLD. Melatonin treatment (100 µM) to HepG2 cells led to an improvement in oscillatory pattern of clock genes (Clock, Bmal1, and Per) in oleic acid (OA)‐induced circadian desynchrony, while Cry, Nrf2, and HO‐1 remain oblivious of melatonin treatment that was also validated by circwave analysis. C57BL/6J mice subjected to HFHF and/or JL, and treated with melatonin showed an improvement in the profile of lipid regulatory genes (CPT‐1, PPARa, and SREBP‐1c), liver function (AST and ALT) and histomorphology of fatty liver. A detailed scrutiny revealed that hepatic mRNA and protein profiles of Bmal1 (at ZT6) and Clock (at ZT12) underwent corrective changes in oscillations, but moderate corrections were recorded in other components of clock genes (Per1, Per2, and Cry2). Melatonin induced changes in oscillations of anti‐oxidant genes (Nrf2, HO‐1, and Keap1) subtly contributed in the overall improvement in NAFLD recorded herein. Taken together, melatonin induced reprograming of hepatic core clock and Nrf2‐HO‐1 genes leads to an improvement in HFHF/JL‐induced NAFLD.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermelatonin
dc.subject.otherclock genes
dc.subject.otherNAFLD
dc.subject.otherNrf2‐HO‐1
dc.titleMelatonin induces Nrf2‐HO‐1 reprogramming and corrections in hepatic core clock oscillations in Non‐alcoholic fatty liver disease
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169287/1/fsb221803-sup-0001-FigS1-S8.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169287/2/fsb221803.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169287/3/fsb221803_am.pdf
dc.identifier.doi10.1096/fj.202002556RRR
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceHong F, Pan S, Xu P, et al. Melatonin orchestrates lipid homeostasis through the hepatointestinal circadian clock and microbiota during constant light exposure. Cells. 2020; 9 ( 2 ): 489.
dc.identifier.citedreferenceFroy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007; 28 ( 2‐3 ): 61 ‐ 71.
dc.identifier.citedreferenceEarly JO, Menon D, Wyse CA, et al. Circadian clock protein BMAL1 regulates IL‐1β in macrophages via NRF2. Proc Natl Acad Sci. 2018; 115 ( 36 ): E8460 ‐ E8468.
dc.identifier.citedreferenceLee J, Moulik M, Fang Z, et al. Bmal1 and β‐cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress‐induced β‐cell failure in mice. Mol Cell Biol. 2013; 33 ( 11 ): 2327 ‐ 2338.
dc.identifier.citedreferenceQi G, Mi Y, Fan R, Zhao B, Ren B, Liu X. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1. Food Chem Toxicol. 2017; 110: 189 ‐ 199.
dc.identifier.citedreferencePekovic‐Vaughan V, Gibbs J, Yoshitane H, et al. The circadian clock regulates rhythmic activation of the NRF2/glutathione‐mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 2014; 28 ( 6 ): 548 ‐ 560.
dc.identifier.citedreferenceCipolla‐Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy metabolism, and obesity: a review. J Pineal Res. 2014; 56 ( 4 ): 371 ‐ 381.
dc.identifier.citedreferenceClaustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005; 9 ( 1 ): 11 ‐ 24.
dc.identifier.citedreferenceGonzalez A, del Castillo‐Vaquero A, Miro‐Moran A, Tapia JA, Salido GM. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res. 2011; 50 ( 3 ): 250 ‐ 260.
dc.identifier.citedreferencePan M, Song Y, Xu J, Gan H. Melatonin ameliorates nonalcoholic fatty liver induced by high‐fat diet in rats. J Pineal Res. 2006; 41 ( 1 ): 79 ‐ 84.
dc.identifier.citedreferenceSun H, Wang X, Chen J, et al. Melatonin improves non‐alcoholic fatty liver disease via MAPK‐JNK/P38 signaling in high‐fat‐diet‐induced obese mice. Lipids Health Dis. 2016; 15 ( 1 ): 1 ‐ 8.
dc.identifier.citedreferenceAsher G, Sassone‐Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015; 161 ( 1 ): 84 ‐ 92.
dc.identifier.citedreferenceCousin SP, Hügl SR, Wrede CE, Kajio H, Myers MG Jr, Rhodes CJ. Free fatty acid‐induced inhibition of glucose and insulin‐like growth factor I‐induced deoxyribonucleic acid synthesis in the pancreatic β‐cell line INS‐1. Endocrinology. 2001; 142 ( 1 ): 229 ‐ 240.
dc.identifier.citedreferenceLiang W, Menke AL, Driessen A, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE. 2014; 9 ( 12 ): 1 ‐ 17. https://doi.org/10.1371/journal.pone.0115922
dc.identifier.citedreferenceMi Y, Tan D, He Y, Zhou X, Zhou Q, Ji S. Melatonin modulates lipid metabolism in HepG2 cells cultured in high concentrations of oleic acid: AMPK pathway activation may play an important role. Cell Biochem Biophys. 2018; 76 ( 4 ): 463 ‐ 470.
dc.identifier.citedreferenceWang D, Wei Y, Wang T, et al. Melatonin attenuates (‐)‐epigallocatehin‐3‐gallate‐triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice. J Pineal Res. 2015; 59 ( 4 ): 497 ‐ 507.
dc.identifier.citedreferenceAdamovich Y, Rousso‐Noori L, Zwighaft Z, et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 2014; 19 ( 2 ): 319 ‐ 330.
dc.identifier.citedreferenceXu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A. Interaction between circadian clocks and metabolic physiology: implications for reproductive fitness. Cell Metab. 2011; 13 ( 6 ): 639.
dc.identifier.citedreferenceHara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 2001; 6 ( 3 ): 269 ‐ 278.
dc.identifier.citedreferenceSun H, Huang F, Qu S. Melatonin: a potential intervention for hepatic steatosis. Lipids Health Dis. 2015; 14 ( 1 ): 1 ‐ 6.
dc.identifier.citedreferenceDas N, Mandala A, Naaz S, et al. Melatonin protects against lipid‐induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res. 2017; 62 ( 4 ): e12404.
dc.identifier.citedreferenceBaxi DB, Singh PK, Vachhrajani KD, Ramachandran AV. Melatonin supplementation in rat ameliorates ovariectomy‐induced oxidative stress. Climacteric. 2013; 16 ( 2 ): 274 ‐ 283.
dc.identifier.citedreferenceRowe C, Gerrard DT, Jenkins R, et al. Proteome‐wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology. 2013; 58 ( 2 ): 799 ‐ 809.
dc.identifier.citedreferenceWiśniewski JR, Vildhede A, Norén A, Artursson P. In‐depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J Proteomics. 2016; 136: 234 ‐ 247.
dc.identifier.citedreferenceMazzoccoli G, Rubino R, Tiberio C, et al. Clock gene expression in human and mouse hepatic models shows similar periodicity but different dynamics of variation. Chronobiol Int. 2016; 33 ( 2 ): 181 ‐ 190.
dc.identifier.citedreferenceKohsaka A, Laposky AD, Ramsey KM, et al. High‐fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007; 6 ( 5 ): 414 ‐ 421.
dc.identifier.citedreferenceSato K, Meng F, Francis H, et al. Melatonin and circadian rhythms in liver diseases: functional roles and potential therapies. J Pineal Res. 2020; 68 ( 3 ): e12639.
dc.identifier.citedreferencePartch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014; 24 ( 2 ): 90 ‐ 99.
dc.identifier.citedreferencePanda S. Circadian physiology of metabolism. Science. 2016; 354 ( 6315 ): 1008 ‐ 1015.
dc.identifier.citedreferenceDamiola F, Le Minh N, Preitner N, Kornmann B, Fleury‐Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000; 14 ( 23 ): 2950 ‐ 2961.
dc.identifier.citedreferenceHsieh MC, Yang SC, Tseng HL, Hwang LL, Chen CT, Shieh KR. Abnormal expressions of circadian‐clock and circadian clock‐controlled genes in the livers and kidneys of long‐term, high‐fat‐diet‐treated mice. Int J Obes. 2010; 34 ( 2 ): 227 ‐ 239.
dc.identifier.citedreferenceMi Y, Qi G, Fan R, Ji X, Liu Z, Liu X. EGCG ameliorates diet‐induced metabolic syndrome associating with the circadian clock. Biochim Biophys Acta (BBA)‐Molecular Basis Dis. 2017; 1863 ( 6 ): 1575 ‐ 1589.
dc.identifier.citedreferenceZhou B, Zhang YI, Zhang F, et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology. 2014; 59 ( 6 ): 2196 ‐ 2206.
dc.identifier.citedreferenceTong X, Zhang D, Arthurs B, et al. Palmitate inhibits SIRT1‐dependent BMAL1/CLOCK interaction and disrupts circadian gene oscillations in hepatocytes. PLoS ONE. 2015; 10 ( 6 ): e0130047.
dc.identifier.citedreferenceQi G, Guo R, Tian H, et al. Nobiletin protects against insulin resistance and disorders of lipid metabolism by reprogramming of circadian clock in hepatocytes. Biochim Biophys Acta (BBA)‐Molecular Cell Biol Lipids. 2018; 1863 ( 6 ): 549 ‐ 562.
dc.identifier.citedreferenceParsons MJ, Moffitt TE, Gregory AM, et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes. 2015; 39 ( 5 ): 842 ‐ 848.
dc.identifier.citedreferenceKhan S, Duan P, Yao L, Hou H. Shiftwork‐mediated disruptions of circadian rhythms and sleep homeostasis cause serious health problems. Int J Genomics. 2018; 2018: 1 ‐ 11.
dc.identifier.citedreferenceRudic RD, McNamara P, Curtis A‐M, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004; 2 ( 11 ): e377.
dc.identifier.citedreferenceIwamoto A, Kawai M, Furuse M, Yasuo S. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice. Chronobiol Int. 2014; 31 ( 2 ): 189 ‐ 198.
dc.identifier.citedreferenceKettner NM, Voicu H, Finegold MJ, et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell. 2016; 30 ( 6 ): 909 ‐ 924.
dc.identifier.citedreferenceMarra F, Gastaldelli A, Baroni GS, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non‐alcoholic steatohepatitis. Trends Mol Med. 2008; 14 ( 2 ): 72 ‐ 81.
dc.identifier.citedreferenceTakaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non‐alcoholic steatohepatitis (NASH). Int J Mol Sci. 2013; 14 ( 10 ): 20704 ‐ 20728.
dc.identifier.citedreferenceKaspar JW, Niture SK, Jaiswal AK. Nrf 2: INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009; 47 ( 9 ): 1304 ‐ 1309.
dc.identifier.citedreferenceUpadhyay KK, Jadeja RN, Vyas HS, et al. Carbon monoxide releasing molecule‐A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function. Redox Biol. 2020; 28: 101314.
dc.identifier.citedreferenceXu Y‐Q, Zhang D, Jin T, et al. Diurnal variation of hepatic antioxidant gene expression in mice. PLoS ONE. 2012; 7 ( 8 ): e44237.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.