Show simple item record

Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation

dc.contributor.authorWang, Yi
dc.contributor.authorHendy, Ingrid L.
dc.date.accessioned2021-09-08T14:37:50Z
dc.date.available2022-09-08 10:37:47en
dc.date.available2021-09-08T14:37:50Z
dc.date.issued2021-08-16
dc.identifier.citationWang, Yi; Hendy, Ingrid L. (2021). "Reorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation." Geophysical Research Letters 48(15): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/169345
dc.description.abstractThe magnitude of natural oceanic dissolved oxygen (DO) variability remains poorly understood due to the short duration of the observational record. Here we present a high‐resolution (4–9 years) reconstruction of the Southern California oxygen minimum zone (OMZ) through the Common Era using redox‐sensitive metals. Rapid OMZ intensification on multidecadal timescales reveals greater DO variability than observed in instrumental records. An anomalous interval of intensified OMZ between 1600–1750 CE contradicts the expectation of better‐ventilated mid‐depth North Pacific during cool climates. Although the influence of low‐DO Equatorial Pacific Intermediate Water on the Southern California Margin was likely weaker during this interval, we attribute the observed rapid deoxygenation to reduced North Pacific Intermediate Water (NPIW) ventilation. NPIW ventilation thus appears very sensitive to atmospheric circulation reorganization (e.g., a weakened Siberian High and Aleutian Low). In addition to temperature‐induced gas solubility, atmospheric forcing under future anthropogenic influences could amplify OMZ variability.Plain Language SummaryOxygen content of the ocean is declining as seawater warms due to anthropogenic climate change impacting gas solubility. However, how much dissolved oxygen in seawater can decrease naturally is unknown, as we have only been measuring oxygen in ocean waters for ∼60 years. We reconstructed oxygen concentrations of bottom waters in Santa Barbara Basin (SBB), CA for the past 2,000 years using marine sediments on sub‐decadal time scales. We found that seawater oxygen varied more in the past than has been recently observed, and that seawater oxygen was surprisingly low during 1600–1750 CE—one of the coldest intervals during the last 1,000 years. At this time the atmospheric circulation over the Sea of Okhotsk suppressed sea ice formation, reducing the surface ocean mixing that supplies oxygen to the subsurface waters. This low‐oxygen subsurface water moved around the northeastern Pacific Ocean and entered SBB. The sensitivity of this process to atmospheric circulation could generate additional seawater oxygen variability. Future projections of ocean oxygen should take these results into account.Key PointsRapid Southern California oxygen minimum zone (OMZ) intensification reveals greater variability than that in post‐Industrial reconstructionIntensified OMZ during the Little Ice Age (LIA) contradicts the expectation of better‐ventilated mid‐depth North Pacific in cool climateOMZ intensification in LIA was due to reduced North Pacific Intermediate Water ventilation under a weakened Aleutian Low and Siberian High
dc.publisherSpringer Berlin Heidelberg
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxygen minimum zone
dc.subject.otheratmospheric circulation
dc.subject.otherNorth Pacific Intermediate Water
dc.subject.otherventilation
dc.subject.otherSouthern California
dc.titleReorganized Atmospheric Circulation During the Little Ice Age Leads to Rapid Southern California Deoxygenation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169345/1/2021GL094469-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169345/2/grl62740_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169345/3/grl62740.pdf
dc.identifier.doi10.1029/2021GL094469
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceWarrick, J. A., & Farnsworth, K. L. ( 2009 ). Sources of sediment to the coastal waters of the Southern California Bight. The Geological Society of America Special Paper, 454, 39 – 52. https://doi.org/10.1130/2009.2454(2.2)
dc.identifier.citedreferenceEagle, M., Paytan, A., Arrigo, K. R., van Dijken, G., & Murray, R. W. ( 2003 ). A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18 ( 1 ). https://doi.org/10.1029/2003pa000922
dc.identifier.citedreferenceGaneshram, R. S., François, R., Commeau, J., & Brown‐Leger, S. L. ( 2003 ). An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67 ( 14 ), 2599 – 2605. https://doi.org/10.1016/s0016-7037(03)00164-9
dc.identifier.citedreferenceGingele, F. X., Zabel, M., Kasten, S., Bonn, W. J., & Nürnberg, C. C. ( 1999 ). Biogenic barium as a proxy for paleoproductivity: Methods and limitations of application. In G. Fischer & G. Wefer (Eds.), Use of Proxies in Paleoceanography: Examples from the South Atlantic (pp. 345 – 364 ). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_13
dc.identifier.citedreferenceHamill, T. M., Whitaker, J. S., & Snyder, C. ( 2001 ). Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter. Monthly Weather Review, 129 ( 11 ), 2776 – 2790. https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2
dc.identifier.citedreferenceHarrison, B. K., Zhang, H., Berelson, W., & Orphan, V. J. ( 2009 ). Variations in archaeal and bacterial diversity associated with the sulfate‐methane transition zone in continental margin sediments (Santa Barbara Basin, California). Applied and Environmental Microbiology, 75 ( 6 ), 1487 – 1499. https://doi.org/10.1128/aem.01812-08
dc.identifier.citedreferenceKimura, N. ( 2004 ). Increase and decrease of sea ice area in the Sea of Okhotsk: Ice production in coastal polynyas and dynamic thickening in convergence zones. Journal of Geophysical Research, 109 ( C9 ). https://doi.org/10.1029/2003jc001901
dc.identifier.citedreferenceKuwabara, J. S., Geen, A. V., Mccorkle, D. C., & Bernhard, J. M. ( 1999 ). Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 63 ( 15 ), 2199 – 2209. https://doi.org/10.1016/s0016-7037(99)00084-8
dc.identifier.citedreferenceMcManus, J., Berelson, W. M., Klinkhammer, G. P., Kilgore, T. E., & Hammond, D. E. ( 1994 ). Remobilization of barium in continental margin sediments. Geochimica et Cosmochimica Acta, 58 ( 22 ), 4899 – 4907. https://doi.org/10.1016/0016-7037(94)90220-8
dc.identifier.citedreferenceMiyao, T., & Ishikawa, K. ( 2003 ). Formation, distribution and volume transport of the North Pacific Intermediate Water studied by repeat hydrographic observations. Journal of Oceanography, 59 ( 6 ), 905 – 919. https://doi.org/10.1023/b:joce.0000009580.24051.90
dc.identifier.citedreferencePAGES 2k Consortium. ( 2017 ). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4, 170088. https://doi.org/10.1038/sdata.2017.88
dc.identifier.citedreferencePaytan, A., & Griffith, E. M. ( 2007 ). Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54 ( 5–7 ), 687 – 705. https://doi.org/10.1016/j.dsr2.2007.01.007
dc.identifier.citedreferenceRaven, M. R., Sessions, A. L., Fischer, W. W., & Adkins, J. F. ( 2016 ). Sedimentary pyrite δ 34 S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120 – 134. https://doi.org/10.1016/j.gca.2016.04.037
dc.identifier.citedreferenceReid, J. L. ( 1965 ). Intermediate waters of the Pacific Ocean. Johns Hopkins Oceanography Studies, 5, 1 – 96.
dc.identifier.citedreferenceReimers, C. E., Ruttenberg, K. C., Canfield, D. E., Christiansen, M. B., & Martin, J. B. ( 1996 ). Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 60 ( 21 ), 4037 – 4057. https://doi.org/10.1016/s0016-7037(96)00231-1
dc.identifier.citedreferenceRiedinger, N., Kasten, S., Gröger, J., Franke, C., & Pfeifer, K. ( 2006 ). Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin. Earth and Planetary Science Letters, 241 ( 3–4 ), 876 – 887. https://doi.org/10.1016/j.epsl.2005.10.032
dc.identifier.citedreferenceShcherbina, A. Y., Talley, L. D., & Rudnick, D. L. ( 2004a ). Dense water formation on the northwestern shelf of the Okhotsk Sea: 1. Direct observations of brine rejection. Journal of Geophysical Research: Oceans, 109 ( C9 ). https://doi.org/10.1029/2003jc002196
dc.identifier.citedreferenceShcherbina, A. Y., Talley, L. D., & Rudnick, D. L. ( 2004b ). Dense water formation on the northwestern shelf of the Okhotsk Sea: 2. Quantifying the transports. Journal of Geophysical Research: Oceans, 109 ( C9 ). https://doi.org/10.1029/2003jc002197
dc.identifier.citedreferenceSteiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., & Roe, G. H. ( 2014 ). Assimilation of time‐averaged pseudoproxies for climate reconstruction. Journal of Climate, 27 ( 1 ), 426 – 441. https://doi.org/10.1175/jcli-d-12-00693.1
dc.identifier.citedreferenceWatanabe, T., & Wakatsuchi, M. ( 1998 ). Formation of 26.8–26.9 σ θ water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. Journal of Geophysical Research: Oceans, 103 ( C2 ), 2849 – 2865. https://doi.org/10.1029/97jc02914
dc.identifier.citedreferenceYou, Y. ( 2003 ). The pathway and circulation of North Pacific Intermediate Water. Geophysical Research Letters, 30 ( 24 ). https://doi.org/10.1029/2003gl018561
dc.identifier.citedreferenceYou, Y., Suginohara, N., Fukasawa, M., Yasuda, I., Kaneko, I., Yoritaka, H., & Kawamiya, M. ( 2000 ). Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. Journal of Geophysical Research, 105 ( C2 ), 3253 – 3280. https://doi.org/10.1029/1999jc900304
dc.identifier.citedreferenceYou, Y., Suginohara, N., Fukasawa, M., Yoritaka, H., Mizuno, K., Kashino, Y., & Hartoyo, D. ( 2003 ). Transport of North Pacific Intermediate Water across Japanese WOCE sections. Journal of Geophysical Research, 108 ( C6 ). https://doi.org/10.1029/2002jc001662
dc.identifier.citedreferenceAltabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., & Francois, R. ( 1999 ). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 46, 655 – 679. https://doi.org/10.1016/s0967-0637(98)00084-3
dc.identifier.citedreferenceAnderson, L., Abbott, M., Finney, B., & Burns, S. ( 2005 ). Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research. https://doi.org/10.1016/j.yqres.2005.03.008
dc.identifier.citedreferenceBailey, H. L., Kaufman, D. S., Sloane, H. J., Hubbard, A. L., Henderson, A. C. G., Leng, M. J., et al. ( 2018 ). Holocene atmospheric circulation in the central North Pacific: A new terrestrial diatom and δ 18 O dataset from the Aleutian Islands. Quaternary Science Reviews, 194, 27 – 38. https://doi.org/10.1016/j.quascirev.2018.06.027
dc.identifier.citedreferenceBarron, J. A., Bukry, D., & Hendy, I. L. ( 2015 ). High‐resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901‐02KC. Quaternary International, 387, 13 – 22. https://doi.org/10.1016/j.quaint.2014.04.020
dc.identifier.citedreferenceBehl, R. J., & Kennett, J. P. ( 1996 ). Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature, 379 ( 6562 ), 243 – 246. https://doi.org/10.1038/379243a0
dc.identifier.citedreferenceBograd, S. J. ( 2002 ). Bottom water renewal in the Santa Barbara Basin. Journal of Geophysical Research, 107 ( C12 ). https://doi.org/10.1029/2001jc001291
dc.identifier.citedreferenceBopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., et al. ( 2013 ). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10 ( 10 ), 6225 – 6245. https://doi.org/10.5194/bg-10-6225-2013
dc.identifier.citedreferenceBostock, H. C., Opdyke, B. N., & Williams, M. J. M. ( 2010 ). Characterising the intermediate depth waters of the Pacific Ocean using δ 13 C and other geochemical tracers. Deep Sea Research Part I: Oceanographic Research Papers, 57 ( 7 ), 847 – 859. https://doi.org/10.1016/j.dsr.2010.04.005
dc.identifier.citedreferenceBostock, H. C., Sutton, P. J., Williams, M. J., & Opdyke, B. N. ( 2013 ). Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories. Deep Sea Research Part I: Oceanographic Research Papers, 73, 84 – 98. https://doi.org/10.1016/j.dsr.2012.11.007
dc.identifier.citedreferenceBreitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., et al. ( 2018 ). Declining oxygen in the global ocean and coastal waters. Science, 359 ( 6371 ). https://doi.org/10.1126/science.aam7240
dc.identifier.citedreferenceCalvert, S. E., & Pedersen, T. F. ( 2007 ). Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Developments in Marine Geology, 1, 567 – 644. https://doi.org/10.1016/s1572-5480(07)01019-6
dc.identifier.citedreferenceCannariato, K. G., & Kennett, J. P. ( 1999 ). Climatically related millennial‐scale fluctuations in strength of California margin oxygen‐minimum zone during the past 60 k.y. Geology, 27 ( 11 ), 975 – 978. https://doi.org/10.1130/0091-7613(1999)027<0975:CRMSFI>2.3.CO;2
dc.identifier.citedreferenceCarstensen, J., Andersen, J. H., Gustafsson, B. G., & Conley, D. J. ( 2014 ). Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences, 111 ( 15 ), 5628 – 5633. https://doi.org/10.1073/pnas.1323156111
dc.identifier.citedreferenceCheckley, D. M., & Barth, J. A. ( 2009 ). Patterns and processes in the California Current System. Progress in Oceanography, 83 ( 1–4 ), 49 – 64. https://doi.org/10.1016/j.pocean.2009.07.028
dc.identifier.citedreferenceCrusius, J., Calvert, S., Pedersen, T., & Sage, D. ( 1996 ). Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145, 65 – 78. https://doi.org/10.1016/s0012-821x(96)00204-x
dc.identifier.citedreferenceCrusius, J., Pedersen, T. F., Kienast, S., Keigwin, L., & Labeyrie, L. ( 2004 ). Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling‐Ållerød interval (14.7–12.9 ka). Geology, 32 ( 7 ), 633. https://doi.org/10.1130/g20508.1
dc.identifier.citedreferenceDavis, C. V., Ontiveros‐Cuadras, J. F., Benitez‐Nelson, C., Schmittner, A., Tappa, E. J., Osborne, E., & Thunell, R. C. ( 2019 ). Ongoing increase in Eastern Tropical North Pacific denitrification as interpreted through the Santa Barbara Basin sedimentary δ 15 N record. Paleoceanography and Paleoclimatology, 34 ( 9 ), 1554 – 1567. https://doi.org/10.1029/2019pa003578
dc.identifier.citedreferenceDeutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., et al. ( 2014 ). Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345 ( 6197 ), 665 – 668. https://doi.org/10.1126/science.1252332
dc.identifier.citedreferenceDu, X., Hendy, I., & Schimmelmann, A. ( 2018 ). A 9000‐year flood history for Southern California: A revised stratigraphy of varved sediments in Santa Barbara Basin. Marine Geology, 397, 29 – 42. https://doi.org/10.1016/j.margeo.2017.11.014
dc.identifier.citedreferenceErickson, B. E., & Helz, G. R. ( 2000 ). Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64 ( 7 ), 1149 – 1158. https://doi.org/10.1016/s0016-7037(99)00423-8
dc.identifier.citedreferenceEvans, Z. C., Boles, E., Kwiecinski, J. V., Mullen, S., Wolf, M., Devol, A. H., et al. ( 2020 ). The role of water masses in shaping the distribution of redox active compounds in the Eastern Tropical North Pacific oxygen deficient zone and influencing low oxygen concentrations in the eastern Pacific Ocean. Limnology and Oceanography. https://doi.org/10.1002/lno.11412
dc.identifier.citedreferenceFisler, J., & Hendy, I. L. ( 2008 ). California Current System response to late Holocene climate cooling in southern California. Geophysical Research Letters, 35 ( 9 ). https://doi.org/10.1029/2008gl033902
dc.identifier.citedreferenceGoericke, R., Bograd, S. J., & Grundle, D. S. ( 2015 ). Denitrification and flushing of the Santa Barbara Basin bottom waters. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 53 – 60. https://doi.org/10.1016/j.dsr2.2014.07.012
dc.identifier.citedreferenceGriffith, E. M., & Paytan, A. ( 2012 ). Barite in the ocean ‐ Occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59 ( 6 ), 1817 – 1835. https://doi.org/10.1111/j.1365-3091.2012.01327.x
dc.identifier.citedreferenceHakim, G. J., Emile‐Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif, R., et al. ( 2016 ). The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research: Atmospheres, 121 ( 12 ), 6745 – 6764. https://doi.org/10.1002/2016jd024751
dc.identifier.citedreferenceHendy, I. L. ( 2010 ). Diagenetic behavior of barite in a coastal upwelling setting. Paleoceanography, 25 ( 4 ). https://doi.org/10.1029/2009pa001890
dc.identifier.citedreferenceHendy, I. L., Dunn, L., Schimmelmann, A., & Pak, D. K. ( 2013 ). Resolving varve and radiocarbon chronology differences during the last 2000 years in the Santa Barbara Basin sedimentary record, California. Quaternary International, 310, 155 – 168. https://doi.org/10.1016/j.quaint.2012.09.006
dc.identifier.citedreferenceHendy, I. L., Napier, T. J., & Schimmelmann, A. ( 2015 ). From extreme rainfall to drought: 250 years of annually resolved sediment deposition in Santa Barbara Basin, California. Quaternary International, 387, 3 – 12. https://doi.org/10.1016/j.quaint.2015.01.026
dc.identifier.citedreferenceHendy, I. L., & Pedersen, T. F. ( 2005 ). Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from Ocean Drilling Program Hole 1017E, San Lucia slope, California. Paleoceanography, 20 ( 4 ), 1 – 12. https://doi.org/10.1029/2004pa001123
dc.identifier.citedreferenceItaki, T. ( 2004 ). Middle to late Holocene changes of the Okhotsk Sea Intermediate Water and their relation to atmospheric circulation. Geophysical Research Letters, 31 ( 24 ). https://doi.org/10.1029/2004gl021384
dc.identifier.citedreferenceIvanochko, T. S., & Pedersen, T. F. ( 2004 ). Determining the influences of Late Quaternary ventilation and productivity variations on Santa Barbara Basin sedimentary oxygenation: A multi‐proxy approach. Quaternary Science Reviews, 23 ( 3–4 ), 467 – 480. https://doi.org/10.1016/j.quascirev.2003.06.006
dc.identifier.citedreferenceKeigwin, L. D. ( 1998 ). Glacial‐age hydrography of the far northwest Pacific Ocean. Paleoceanography, 13 ( 4 ), 323 – 339. https://doi.org/10.1029/98pa00874
dc.identifier.citedreferenceKienast, S. S., Calvert, S. E., & Pedersen, T. F. ( 2002 ). Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: Surface and subsurface paleoceanography. Paleoceanography, 17 ( 4 ), 7‐1–7‐17. https://doi.org/10.1029/2001pa000650
dc.identifier.citedreferenceKoizumi, I., Shiga, K., Irino, T., & Ikehara, M. ( 2003 ). Diatom record of the late Holocene in the Okhotsk Sea. Marine Micropaleontology, 49 ( 1 ), 139 – 156. https://doi.org/10.1016/s0377-8398(03)00033-1
dc.identifier.citedreferenceLiu, K.‐K., & Kaplan, I. R. ( 1989 ). The eastern tropical Pacific as a source of 15N‐enriched nitrate in seawater off southern California. Limnology and Oceanography, 34 ( 5 ), 820 – 830. https://doi.org/10.4319/lo.1989.34.5.0820
dc.identifier.citedreferenceMartin, S., Drucker, R., & Yamashita, K. ( 1998 ). The production of ice and dense shelf water in the Okhotsk Sea polynyas. Journal of Geophysical Research: Oceans, 103 ( C12 ), 27771 – 27782. https://doi.org/10.1029/98jc02242
dc.identifier.citedreferenceTalley, L. D. ( 2008 ). Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Progress in Oceanography, 78 ( 4 ), 257 – 303. https://doi.org/10.1016/j.pocean.2008.05.001
dc.identifier.citedreferenceMcManus, J., Berelson, W. M., Klinkhammer, G. P., Johnson, K. S., Coale, K. H., Anderson, R. F., et al. ( 1998 ). Geochemistry of barium in marine sediments: Implications for its use as a paleoproxy. Geochimica et Cosmochimica Acta, 62 ( 21 ), 3453 – 3473. https://doi.org/10.1016/s0016-7037(98)00248-8
dc.identifier.citedreferenceMoffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P., & Behl, R. J. ( 2014 ). Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective. Paleoceanography, 29 ( 1 ), 44 – 57. https://doi.org/10.1002/2013pa002483
dc.identifier.citedreferenceMoffitt, S. E., Hill, T. M., Roopnarine, P. D., & Kennett, J. P. ( 2015 ). Response of seafloor ecosystems to abrupt global climate change. Proceedings of the National Academy of Sciences, 112 ( 15 ), 4684 – 4689. https://doi.org/10.1073/pnas.1417130112
dc.identifier.citedreferenceNapier, T. J., Hendy, I. L., Fahnestock, M. F., & Bryce, J. G. ( 2019 ). Provenance of detrital sediments in Santa Barbara Basin, California, USA: Changes in source contributions between the Last Glacial Maximum and Holocene. GSA Bulletin, 132 ( 1–2 ), 65 – 84. https://doi.org/10.1130/b32035.1
dc.identifier.citedreferenceNeukom, R., Barboza, L. A., Erb, M. P., Shi, F., Emile‐Geay, J., Evans, M. N., et al. ( 2019 ). Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience, 12 ( 8 ), 643 – 649. https://doi.org/10.1038/s41561-019-0400-0
dc.identifier.citedreferenceNeukom, R., Steiger, N., Gómez‐Navarro, J. J., Wang, J., & Werner, J. P. ( 2019 ). No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 571, 550 – 554. https://doi.org/10.1038/s41586-019-1401-2
dc.identifier.citedreferenceOhkushi, K., Kennett, J. P., Zeleski, C. M., Moffitt, S. E., Hill, T. M., Robert, C., et al. ( 2013 ). Quantified intermediate water oxygenation history of the NE Pacific: A new benthic foraminiferal record from Santa Barbara basin. Paleoceanography, 28 ( 3 ), 453 – 467. https://doi.org/10.1002/palo.20043
dc.identifier.citedreferenceOkazaki, Y., Seki, O., Nakatsuka, T., Sakamoto, T., Ikehara, M., & Takahashi, K. ( 2006 ). Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: A key for reconstructing glacial ocean conditions. Journal of Oceanography, 62, 639 – 648. https://doi.org/10.1007/s10872-006-0082-2
dc.identifier.citedreferenceOsterberg, E. C., Mayewski, P. A., Fisher, D. A., Kreutz, K. J., Maasch, K. A., Sneed, S. B., & Kelsey, E., et al. ( 2014 ). Mount Logan ice core record of tropical and solar influences on Aleutian Low variability: 500–1998 A.D. Journal of Geophysical Research: Atmospheres, 119 ( 19 ), 11189 – 11204. https://doi.org/10.1002/2014jd021847
dc.identifier.citedreferenceOsterberg, E. C., Winski, D. A., Kreutz, K. J., Wake, C. P., Ferris, D. G., Campbell, S., et al. ( 2017 ). The 1200 year composite ice core record of Aleutian Low intensification. Geophysical Research Letters, 44 ( 14 ), 7447 – 7454. https://doi.org/10.1002/2017gl073697
dc.identifier.citedreferencePAGES 2k Consortium. ( 2013 ). Continental‐scale temperature variability during the past two millennia. Nature Geoscience, 6 ( 5 ), 339 – 346. https://doi.org/10.1038/ngeo1797
dc.identifier.citedreferenceParkinson, C. L. ( 1990 ). The impact of the Siberian High and Aleutian Low on the sea‐ice cover of the sea of Okhotsk. Annals of Glaciology, 14, 226 – 229. https://doi.org/10.1017/s0260305500008636
dc.identifier.citedreferenceReimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., et al. ( 2013 ). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55 ( 4 ), 1869 – 1887. https://doi.org/10.2458/azu_js_rc.55.16947
dc.identifier.citedreferenceRodionov, S. N., Bond, N. A., & Overland, J. E. ( 2007 ). The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54 ( 23–26 ), 2560 – 2577. https://doi.org/10.1016/j.dsr2.2007.08.002
dc.identifier.citedreferenceSchimmelmann, A., Lange, C. B., Berger, W. H., Simon, A., Burke, S. K., & Dunbar, R. B. ( 1992 ). Extreme climatic conditions recorded in Santa Barbara Basin laminated sediments: The 1835–1840 Macoma event. Marine Geology, 106, 279 – 299. https://doi.org/10.1016/0025-3227(92)90134-4
dc.identifier.citedreferenceScott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., & Anbar, A. D. ( 2008 ). Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452 ( 7186 ), 456 – 459. https://doi.org/10.1038/nature06811
dc.identifier.citedreferenceShimada, C., Ikehara, K., Tanimura, Y., & Hasegawa, S. ( 2004 ). Millennial‐scale variability of Holocene hydrography in the southwestern Okhotsk Sea: Diatom evidence. The Holocene, 14 ( 5 ), 641 – 650. https://doi.org/10.1191/0959683604hl743rp
dc.identifier.citedreferenceSkrivanek, A., & Hendy, I. L. ( 2015 ). A 500 year climate catch: Pelagic fish scales and paleoproductivity in the Santa Barbara Basin from the Medieval Climate Anomaly to the Little Ice Age (AD 1000–1500). Quaternary International, 387, 36 – 45. https://doi.org/10.1016/j.quaint.2015.07.044
dc.identifier.citedreferenceStramma, L., Schmidtko, S., Levin, L. A., & Johnson, G. C. ( 2010 ). Ocean oxygen minima expansions and their biological impacts. Deep Sea Research Part I: Oceanographic Research Papers, 57 ( 4 ), 587 – 595. https://doi.org/10.1016/j.dsr.2010.01.005
dc.identifier.citedreferenceTachibana, Y., Honda, M., & Takeuchi, K. ( 1996 ). The abrupt decrease of the sea ice over the southern part of the Sea of Okhotsk in 1989 and its relation to the recent weakening of the Aleutian Low. Journal of the Meteorological Society of Japan. Ser. II, 74 ( 4 ), 579 – 584. https://doi.org/10.2151/jmsj1965.74.4_579
dc.identifier.citedreferenceTalley, L. D. ( 1993 ). Distribution and formation of North Pacific Intermediate Water. Journal of Geophysical Oceanography, 23, 517 – 537. https://doi.org/10.1175/1520-0485(1993)023<0517:dafonp>2.0.co;2
dc.identifier.citedreferenceTardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile‐Geay, J., et al. ( 2019 ). Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Climate of the Past, 15 ( 4 ), 1251 – 1273. https://doi.org/10.5194/cp-15-1251-2019
dc.identifier.citedreferenceTems, C. E., Berelson, W. M., & Prokopenko, M. G. ( 2015 ). Particulate δ 15 N in laminated marine sediments as a proxy for mixing between the California Undercurrent and the California Current: A proof of concept. Geophysical Research Letters, 42 ( 2 ), 419 – 427. https://doi.org/10.1002/2014gl061993
dc.identifier.citedreferenceTems, C. E., Berelson, W. M., Thunell, R., Tappa, E., Xu, X., Khider, D., et al. ( 2016 ). Decadal to centennial fluctuations in the intensity of the eastern tropical North Pacific oxygen minimum zone during the last 1200 years. Paleoceanography, 31 ( 8 ), 1138 – 1151. https://doi.org/10.1002/2015pa002904
dc.identifier.citedreferenceTessin, A., Chappaz, A., Hendy, I., & Sheldon, N. ( 2018 ). Molybdenum speciation as a paleo‐redox proxy: A case study from Late Cretaceous Western Interior Seaway black shales. Geology, 47 ( 1 ), 59 – 62. https://doi.org/10.1130/g45785.1
dc.identifier.citedreferenceTorres, M. E., Brumsack, H. J., Bohrmann, G., & Emeis, K. C. ( 1996 ). Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127 ( 1 ), 125 – 139. https://doi.org/10.1016/0009-2541(95)00090-9
dc.identifier.citedreferenceTribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. ( 2006 ). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232 ( 1–2 ), 12 – 32. https://doi.org/10.1016/j.chemgeo.2006.02.012
dc.identifier.citedreferenceVon Breymann, M. T., Emeis, K.‐C., & Suess, E. ( 1992 ). Water depth and diagenetic constraints on the use of barium as a palaeoproductivity indicator. Geological Society, London, Special Publications, 64 ( 1 ), 273 – 284. https://doi.org/10.1144/gsl.sp.1992.064.01.18
dc.identifier.citedreferenceWagner, M., Chappaz, A., & Lyons, T. W. ( 2017 ). Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS. Geochimica et Cosmochimica Acta, 206, 18 – 29. https://doi.org/10.1016/j.gca.2017.02.018
dc.identifier.citedreferenceWang, Y., Hendy, I. L., & Thunell, R. ( 2019 ). Local and remote forcing of denitrification in the northeast Pacific for the last 2,000 years. Paleoceanography and Paleoclimatology, 34 ( 8 ), 1517 – 1533. https://doi.org/10.1029/2019pa003577
dc.identifier.citedreferenceWang, Y., Hendy, I. L., & Zhu, J. ( 2020 ). Expansion of the Southern California oxygen minimum zone during the early‐to mid‐Holocene due to reduced ventilation of the Northeast Pacific. Quaternary Science Reviews, 238, 106326. https://doi.org/10.1016/j.quascirev.2020.106326
dc.identifier.citedreferenceWang, Y., Hendy, I., & Napier, T. J. ( 2017 ). Climate and anthropogenic controls of coastal deoxygenation on interannual to centennial timescales. Geophysical Research Letters, 44 ( 22 ), 11528 – 11536. https://doi.org/10.1002/2017gl075443
dc.identifier.citedreferenceYasuda, I. ( 1997 ). The origin of the North Pacific Intermediate Water. Journal of Geophysical Research, 102 ( C1 ), 893 – 909. https://doi.org/10.1029/96jc02938
dc.identifier.citedreferenceZheng, Y., Anderson, R. F., Geen, A. V., & James, K. ( 2000 ). Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64 ( 24 ), 4165 – 4178. https://doi.org/10.1016/s0016-7037(00)00495-6
dc.identifier.citedreferenceBerelson, W. M., Prokopenko, M., Sansone, F. J., Graham, A. W., McManus, J., & Bernhard, J. M. ( 2005 ). Anaerobic diagenesis of silica and carbon in continental margin sediments: Discrete zones of TCO 2 production. Geochimica et Cosmochimica Acta, 69 ( 19 ), 4611 – 4629. https://doi.org/10.1016/j.gca.2005.05.011
dc.identifier.citedreferenceBishop, J. K. B. ( 1988 ). The barite‐opal‐organic carbon association in oceanic particulate matter. Nature, 332 ( 6162 ), 341 – 343. https://doi.org/10.1038/332341a0
dc.identifier.citedreferenceDymond, J., Suess, E., & Lyle, M. ( 1992 ). Barium in deep‐sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7 ( 2 ), 163 – 181. https://doi.org/10.1029/92pa00181
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.