Show simple item record

Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2

dc.contributor.authorGinnard, Shane M.
dc.contributor.authorWinkler, Alyssa E.
dc.contributor.authorMellado Fritz, Carlos
dc.contributor.authorBluhm, Tatum
dc.contributor.authorKemmer, Ray
dc.contributor.authorGilliam, Marisa
dc.contributor.authorButkevich, Nick
dc.contributor.authorAbdrabbo, Sara
dc.contributor.authorBricker, Kaitlyn
dc.contributor.authorFeiler, Justin
dc.contributor.authorMiller, Isaak
dc.contributor.authorZoerman, Jenna
dc.contributor.authorEl-Mohri, Zeineb
dc.contributor.authorKhuansanguan, Panida
dc.contributor.authorBasch, Madyson
dc.contributor.authorPetzold, Timothy
dc.contributor.authorKostoff, Matthew
dc.contributor.authorKonopka, Sean
dc.contributor.authorKociba, Brendon
dc.contributor.authorGillis, Thomas
dc.contributor.authorHeyl, Deborah L.
dc.contributor.authorTrievel, Raymond C.
dc.contributor.authorAlbaugh, Brittany N.
dc.date.accessioned2022-02-07T20:21:43Z
dc.date.available2023-04-07 15:21:42en
dc.date.available2022-02-07T20:21:43Z
dc.date.issued2022-03
dc.identifier.citationGinnard, Shane M.; Winkler, Alyssa E.; Mellado Fritz, Carlos; Bluhm, Tatum; Kemmer, Ray; Gilliam, Marisa; Butkevich, Nick; Abdrabbo, Sara; Bricker, Kaitlyn; Feiler, Justin; Miller, Isaak; Zoerman, Jenna; El-Mohri, Zeineb ; Khuansanguan, Panida; Basch, Madyson; Petzold, Timothy; Kostoff, Matthew; Konopka, Sean; Kociba, Brendon; Gillis, Thomas; Heyl, Deborah L.; Trievel, Raymond C.; Albaugh, Brittany N. (2022). "Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2." Proteins: Structure, Function, and Bioinformatics 90(3): 835-847.
dc.identifier.issn0887-3585
dc.identifier.issn1097-0134
dc.identifier.urihttps://hdl.handle.net/2027.42/171509
dc.description.abstractUbiquitin- like containing PHD and ring finger (UHRF)1 and UHRF2 are multidomain epigenetic proteins that play a critical role in bridging crosstalk between histone modifications and DNA methylation. Both proteins contain two histone reader domains, called tandem Tudor domain (TTD) and plant homeodomain (PHD), which read the modification status on histone H3 to regulate DNA methylation and gene expression. To shed light on the mechanism of histone binding by UHRF2, we have undergone a detailed molecular investigation with the TTD, PHD and TTD- PHD domains and compared the binding activity to its UHRF1 counterpart. We found that unlike UHRF1 where the PHD is the primary binding contributor, the TTD of UHRF2 has modestly higher affinity toward the H3 tail, while the PHD has a weaker binding interaction. We also demonstrated that like UHRF1, the aromatic amino acids within the TTD are important for binding to H3K9me3 and a conserved aspartic acid within the PHD forms an ionic interaction with R2 of H3. However, while the aromatic amino acids in the TTD of UHRF1 contribute to selectivity, the analogous residues in UHRF2 contribute to both selectivity and affinity. We also discovered that the PHD of UHRF2 contains a distinct asparagine in the H3R2 binding pocket that lowers the binding affinity of the PHD by reducing a potential electrostatic interaction with the H3 tail. Furthermore, we demonstrate the PHD and TTD of UHRF2 cooperate to interact with the H3 tail and that dual domain engagement with the H3 tail relies on specific amino acids. Lastly, our data indicate that the unique stretch region in the TTD of UHRF2 can decrease the melting temperature of the TTD- PHD and represents a disordered region. Thus, these subtle but important mechanistic differences are potential avenues for selectively targeting the histone binding interactions of UHRF1 and UHRF2 with small molecules.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherstructure comparison
dc.subject.otherepigenetics
dc.subject.otherhistones
dc.subject.otherbinding interactions
dc.subject.otherchromatin
dc.titleMolecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171509/1/prot26278.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171509/2/prot26278_am.pdf
dc.identifier.doi10.1002/prot.26278
dc.identifier.sourceProteins: Structure, Function, and Bioinformatics
dc.identifier.citedreferenceIguchi T, Ueda M, Masuda T, et al. Identification of UHRF2 as a negative regulator of epithelial- mesenchymal transition and its clinical significance in esophageal squamous cell carcinoma. OCL. 2018; 95 ( 3 ): 179 - 187. doi: 10.1159/000488860
dc.identifier.citedreferenceXie S, Jakoncic J, Qian C. UHRF1 double Tudor domain and the adjacent PHD finger act together to recognize K9me3- containing histone H3 tail. J Mol Biol. 2012; 415 ( 2 ): 318 - 328. doi: 10.1016/j.jmb.2011.11.012
dc.identifier.citedreferenceHarrison JS, Cornett EM, Goldfarb D, et al. Hemi- methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. Workman JL, ed. eLife. 2016; 5: e17101. doi: 10.7554/eLife.17101
dc.identifier.citedreferenceIshiyama S, Nishiyama A, Saeki Y, et al. Structure of the Dnmt1 reader module Complexed with a unique two- mono- ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol Cell. 2017; 68 ( 2 ): 350 - 360.e7. doi: 10.1016/j.molcel.2017.09.037
dc.identifier.citedreferenceZhang J, Gao Q, Li P, et al. S phase- dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance. Cell Res. 2011; 21 ( 12 ): 1723 - 1739. doi: 10.1038/cr.2011.176
dc.identifier.citedreferencePichler G, Wolf P, Schmidt CS, et al. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem. 2011; 112 ( 9 ): 2585 - 2593. doi: 10.1002/jcb.23185
dc.identifier.citedreferenceVaughan RM, Dickson BM, Cornett EM, Harrison JS, Kuhlman B, Rothbart SB. Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Res. 2018; 46 ( 9 ): 4405 - 4416. doi: 10.1093/nar/gky151
dc.identifier.citedreferenceChen R, Zhang Q, Duan X, et al. The 5- Hydroxymethylcytosine (5hmC) reader UHRF2 is required for Normal levels of 5hmC in mouse adult brain and spatial learning and memory. J Biol Chem. 2017; 292 ( 11 ): 4533 - 4543. doi: 10.1074/jbc.M116.754580
dc.identifier.citedreferenceLu H, Bhoopatiraju S, Wang H, et al. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5- hydroxymethylcytosine, and high proliferative activity.  Oncotarget. 2016; 7 ( 46 ): 76047 - 76061. doi: 10.18632/oncotarget.12583
dc.identifier.citedreferenceLuo T, Cui S, Bian C, Yu X. Uhrf2 is important for DNA damage response in vascular smooth muscle cells. Biochem Biophys Res Commun. 2013; 441 ( 1 ): 65 - 70. doi: 10.1016/j.bbrc.2013.10.018
dc.identifier.citedreferenceAshraf W, Ibrahim A, Alhosin M, et al. The epigenetic integrator UHRF1: on the road to become a universal biomarker for cancer. Oncotarget. 2017; 8 ( 31 ): 51946 - 51962. doi: 10.18632/oncotarget.17393
dc.identifier.citedreferenceGeng Y, Gao Y, Ju H, Yan F. Diagnostic and prognostic value of plasma and tissue ubiquitin- like, containing PHD and RING finger domains 1 in breast cancer patients. Cancer Sci. 2013; 104 ( 2 ): 194 - 199. doi: 10.1111/cas.12052
dc.identifier.citedreferenceBabbio F, Pistore C, Curti L, et al. The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene. 2012; 31 ( 46 ): 4878 - 4887. doi: 10.1038/onc.2011.641
dc.identifier.citedreferenceUnoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y. UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer. 2010; 103 ( 2 ): 217 - 222. doi: 10.1038/sj.bjc.6605717
dc.identifier.citedreferenceKofunato Y, Kumamoto K, Saitou K, et al. UHRF1 expression is upregulated and associated with cellular proliferation in colorectal cancer. Oncol Rep. 2012; 28 ( 6 ): 1997 - 2002. doi: 10.3892/or.2012.2064
dc.identifier.citedreferenceUnoki M, Kelly JD, Neal DE, Ponder BAJ, Nakamura Y, Hamamoto R. UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. Br J Cancer. 2009; 101 ( 1 ): 98 - 105. doi: 10.1038/sj.bjc.6605123
dc.identifier.citedreferenceUnoki M, Nishidate T, Nakamura Y. ICBP90, an E2F- 1 target, recruits HDAC1 and binds to methyl- CpG through its SRA domain. Oncogene. 2004; 23 ( 46 ): 7601 - 7610. doi: 10.1038/sj.onc.1208053
dc.identifier.citedreferenceJin W, Chen L, Chen Y, et al. UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res Treat. 2010; 123 ( 2 ): 359 - 373. doi: 10.1007/s10549- 009- 0652- 2
dc.identifier.citedreferenceAlhosin M, Omran Z, Zamzami MA, et al. Signalling pathways in UHRF1- dependent regulation of tumor suppressor genes in cancer. J Exp Clin Cancer Res. 2016; 35 ( 1 ): 174. doi: 10.1186/s13046- 016- 0453- 5
dc.identifier.citedreferenceLai M, Liang L, Chen J, et al. Multidimensional proteomics reveals a role of UHRF2 in the regulation of epithelial- mesenchymal transition (EMT). Mol Cell Proteomics. 2016; 15 ( 7 ): 2263 - 2278. doi: 10.1074/mcp.M115.057448
dc.identifier.citedreferenceLi L, Duan Q, Zeng Z, et al. UHRF2 promotes intestinal tumorigenesis through stabilization of TCF4 mediated Wnt/β- catenin signaling. Int J Cancer. 2020; 147 ( 8 ): 2239 - 2252. doi: 10.1002/ijc.33036
dc.identifier.citedreferenceLu S, Yan D, Wu Z, et al. Ubiquitin- like with PHD and ring finger domains 2 is a predictor of survival and a potential therapeutic target in colon cancer. Oncol Rep. 2014; 31 ( 4 ): 1802 - 1810. doi: 10.3892/or.2014.3035
dc.identifier.citedreferenceMori T, Ikeda DD, Yamaguchi Y, Unoki M, NIRF Project, eds. NIRF/UHRF2 occupies a central position in the cell cycle network and allows coupling with the epigenetic landscape. FEBS Lett. 2012; 586 ( 11 ): 1570 - 1583. doi: 10.1016/j.febslet.2012.04.038
dc.identifier.citedreferenceMori T, Ikeda DD, Fukushima T, Takenoshita S, Kochi H. NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. Cell Cycle. 2011; 10 ( 19 ): 3284 - 3299. doi: 10.4161/cc.10.19.17176
dc.identifier.citedreferenceGiovinazzo H, Walker D, Wyhs N, et al. A high- throughput screen of pharmacologically active compounds for inhibitors of UHRF1 reveals epigenetic activity of anthracycline derivative chemotherapeutic drugs. Oncotarget. 2019; 10 ( 32 ): 3040 - 3050. doi: 10.18632/oncotarget.26889
dc.identifier.citedreferenceSingh AK, Yu X. Novel therapeutic targeting of UHRF1 restores 5- ²- azacytidine response in resistant acute myeloid leukemia. Blood. 2018; 132 ( Suppl 1 ): 1356 - 1356. doi: 10.1182/blood- 2018- 99- 115735
dc.identifier.citedreferenceSenisterra G, Zhu HY, Luo X, et al. Discovery of small- molecule antagonists of the H3K9me3 binding to UHRF1 tandem Tudor domain. SLAS Discov. 2018; 23 ( 9 ): 930 - 940. doi: 10.1177/2472555218766278
dc.identifier.citedreferenceChang L, Campbell J, Raji IO, et al. Discovery of small molecules targeting the tandem Tudor domain of the epigenetic factor UHRF1 using fragment- based ligand discovery. Sci Rep. 2021; 11: 1121. doi: 10.1038/s41598- 020- 80588- 4
dc.identifier.citedreferenceHouliston RS, Lemak A, Iqbal A, et al. Conformational dynamics of the TTD- PHD histone reader module of the UHRF1 epigenetic regulator reveals multiple histone- binding states, allosteric regulation, and druggability. J Biol Chem. 2017; 292 ( 51 ): 20947 - 20959. doi: 10.1074/jbc.M117.799700
dc.identifier.citedreferenceGelato KA, Tauber M, Ong MS, et al. Accessibility of different histone H3- binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5- phosphate. Mol Cell. 2014; 54 ( 6 ): 905 - 919. doi: 10.1016/j.molcel.2014.04.004
dc.identifier.citedreferenceBrameier M, Krings A, MacCallum RM. NucPred- predicting nuclear localization of proteins. Bioinformatics. 2007; 23 ( 9 ): 1159 - 1160. doi: 10.1093/bioinformatics/btm066
dc.identifier.citedreferenceNguyen Ba AN, Pogoutse A, Provart N, Moses AM. NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinformatics. 2009; 10 ( 1 ): 202. doi: 10.1186/1471- 2105- 10- 202
dc.identifier.citedreferenceLin J, Hu J. SeqNLS: Nuclear Localization Signal Prediction Based on Frequent Pattern Mining and Linear Motif Scoring. PLoS ONE. 2013; 8 ( 10 ): e76864. doi: 10.1371/journal.pone.0076864
dc.identifier.citedreferenceUversky VN. Intrinsically disordered proteins from a to Z. Int J Biochem Cell Biol. 2011; 43 ( 8 ): 1090 - 1103. doi: 10.1016/j.biocel.2011.04.001
dc.identifier.citedreferenceUversky VN, Gillespie JR, Fink AL. Why are - natively unfolded- proteins unstructured under physiologic conditions? Proteins Struct Funct Bioinformatics. 2000; 41 ( 3 ): 415 - 427. doi:10.1002/1097- 0134(20001115)41:3<415::AID- PROT130>3.0.CO;2- 7
dc.identifier.citedreferenceMüller- Späth S, Soranno A, Hirschfeld V, et al. Charge interactions can dominate the dimensions of intrinsically disordered proteins. PNAS. 2010; 107 ( 33 ): 14609 - 14614. doi: 10.1073/pnas.1001743107
dc.identifier.citedreferenceWohl S, Jakubowski M, Zheng W. Salt- dependent conformational changes of intrinsically disordered proteins. J Phys Chem Lett. 2021; 12 ( 28 ): 6684 - 6691. doi: 10.1021/acs.jpclett.1c01607
dc.identifier.citedreferenceSlabinski L, Jaroszewski L, Rychlewski L, Wilson IA, Lesley SA, Godzik A. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics. 2007; 23 ( 24 ): 3403 - 3405. doi: 10.1093/bioinformatics/btm477
dc.identifier.citedreferenceWard JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT. The DISOPRED server for the prediction of protein disorder. Bioinformatics. 2004; 20 ( 13 ): 2138 - 2139. doi: 10.1093/bioinformatics/bth195
dc.identifier.citedreferenceHe B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK. Predicting intrinsic disorder in proteins: an overview. Cell Res. 2009; 19 ( 8 ): 929 - 949. doi: 10.1038/cr.2009.87
dc.identifier.citedreferenceTompa P, Schad E, Tantos A, Kalmar L. Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol. 2015; 35: 49 - 59. doi: 10.1016/j.sbi.2015.08.009
dc.identifier.citedreferenceHansen JC, Lu X, Ross ED, Woody RW. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J Biol Chem. 2006; 281 ( 4 ): 1853 - 1856. doi: 10.1074/jbc.R500022200
dc.identifier.citedreferenceDarling AL, Uversky VN. Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front Genet. 2018; 9: 158. doi: 10.3389/fgene.2018.00158
dc.identifier.citedreferenceBronner C, Alhosin M, Hamiche A, Mousli M. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns. Genes (Basel). 2019; 10 ( 1 ): 65 - 78. doi: 10.3390/genes10010065
dc.identifier.citedreferenceSharif J, Muto M, Takebayashi S, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007; 450 ( 7171 ): 908 - 912. doi: 10.1038/nature06397
dc.identifier.citedreferenceBostick M, Kim JK, Estève P- O, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007; 317 ( 5845 ): 1760 - 1764. doi: 10.1126/science.1147939
dc.identifier.citedreferenceLiu X, Gao Q, Li P, et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi- methylated DNA and methylated H3K9. Nat Commun. 2013; 4 ( 1 ): 1563. doi: 10.1038/ncomms2562
dc.identifier.citedreferenceBannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21 ( 3 ): 381 - 395. doi: 10.1038/cr.2011.22
dc.identifier.citedreferenceMusselman CA, Lalonde M- E, Côté J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012; 19 ( 12 ): 1218 - 1227. doi: 10.1038/nsmb.2436
dc.identifier.citedreferenceRothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 2014; 1839 ( 8 ): 627 - 643. doi: 10.1016/j.bbagrm.2014.03.001
dc.identifier.citedreferenceTaverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin- binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007; 14 ( 11 ): 1025 - 1040. doi: 10.1038/nsmb1338
dc.identifier.citedreferenceSu Z, Denu JM. Reading the combinatorial histone language. ACS Chem Biol. 2016; 11 ( 3 ): 564 - 574. doi: 10.1021/acschembio.5b00864
dc.identifier.citedreferenceMio C, Bulotta S, Russo D, Damante G. Reading cancer: chromatin readers as druggable targets for cancer treatment. Cancers (Basel). 2019; 11 ( 1 ): 61 - 78. doi: 10.3390/cancers11010061
dc.identifier.citedreferenceCheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Sig Transduct Target Ther. 2019; 4 ( 1 ): 1 - 39. doi: 10.1038/s41392- 019- 0095- 0
dc.identifier.citedreferenceBronner C, Achour M, Arima Y, Chataigneau T, Saya H, Schini- Kerth VB. The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 2007; 115 ( 3 ): 419 - 434. doi: 10.1016/j.pharmthera.2007.06.003
dc.identifier.citedreferenceHashimoto H, Horton JR, Zhang X, Cheng X. UHRF1, a modular multi- domain protein, regulates replication- coupled crosstalk between DNA methylation and histone modifications. Epigenetics. 2009; 4 ( 1 ): 8 - 14. doi: 10.4161/epi.4.1.7370
dc.identifier.citedreferenceHu L, Li Z, Wang P, Lin Y, Xu Y. Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2. Cell Res. 2011; 21 ( 9 ): 1374 - 1378. doi: 10.1038/cr.2011.124
dc.identifier.citedreferenceArita K, Isogai S, Oda T, et al. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci U S A. 2012; 109 ( 32 ): 12950 - 12955. doi: 10.1073/pnas.1203701109
dc.identifier.citedreferenceCheng J, Yang Y, Fang J, et al. Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem Tudor domain (TTD) of UHRF1 (ubiquitin- like, containing PHD and RING finger domains, 1) protein. J Biol Chem. 2013; 288 ( 2 ): 1329 - 1339. doi: 10.1074/jbc.M112.415398
dc.identifier.citedreferenceNady N, Lemak A, Walker JR, et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem. 2011; 286 ( 27 ): 24300 - 24311. doi: 10.1074/jbc.M111.234104
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.