Show simple item record

The Longitudinal Early- onset Alzheimer’s Disease Study (LEADS): Framework and methodology

dc.contributor.authorApostolova, Liana G.
dc.contributor.authorAisen, Paul
dc.contributor.authorEloyan, Ani
dc.contributor.authorFagan, Anne
dc.contributor.authorFargo, Keith N.
dc.contributor.authorForoud, Tatiana
dc.contributor.authorGatsonis, Constantine
dc.contributor.authorGrinberg, Lea T.
dc.contributor.authorJack, Clifford R.
dc.contributor.authorKramer, Joel
dc.contributor.authorKoeppe, Robert
dc.contributor.authorKukull, Walter A.
dc.contributor.authorMurray, Melissa E.
dc.contributor.authorNudelman, Kelly
dc.contributor.authorRumbaugh, Malia
dc.contributor.authorToga, Arthur
dc.contributor.authorVemuri, Prashanthi
dc.contributor.authorTrullinger, Amy
dc.contributor.authorIaccarino, Leonardo
dc.contributor.authorDay, Gregory S.
dc.contributor.authorGraff-Radford, Neill R.
dc.contributor.authorHonig, Lawrence S.
dc.contributor.authorJones, David T.
dc.contributor.authorMasdeu, Joseph
dc.contributor.authorMendez, Mario
dc.contributor.authorMusiek, Erik
dc.contributor.authorOnyike, Chiadi U.
dc.contributor.authorRogalski, Emily
dc.contributor.authorSalloway, Steve
dc.contributor.authorWolk, David A.
dc.contributor.authorWingo, Thomas S.
dc.contributor.authorCarrillo, Maria C.
dc.contributor.authorDickerson, Bradford C.
dc.contributor.authorRabinovici, Gil D.
dc.date.accessioned2022-02-07T20:25:42Z
dc.date.available2023-01-07 15:25:40en
dc.date.available2022-02-07T20:25:42Z
dc.date.issued2021-12
dc.identifier.citationApostolova, Liana G.; Aisen, Paul; Eloyan, Ani; Fagan, Anne; Fargo, Keith N.; Foroud, Tatiana; Gatsonis, Constantine; Grinberg, Lea T.; Jack, Clifford R.; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; Murray, Melissa E.; Nudelman, Kelly; Rumbaugh, Malia; Toga, Arthur; Vemuri, Prashanthi; Trullinger, Amy; Iaccarino, Leonardo; Day, Gregory S.; Graff‐radford, Neill R. ; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph; Mendez, Mario; Musiek, Erik; Onyike, Chiadi U.; Rogalski, Emily; Salloway, Steve; Wolk, David A.; Wingo, Thomas S.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D. (2021). "The Longitudinal Early- onset Alzheimer’s Disease Study (LEADS): Framework and methodology." Alzheimer’s & Dementia 17(12): 2043-2055.
dc.identifier.issn1552-5260
dc.identifier.issn1552-5279
dc.identifier.urihttps://hdl.handle.net/2027.42/171607
dc.description.abstractPatients with early- onset Alzheimer’s disease (EOAD) are commonly excluded from large- scale observational and therapeutic studies due to their young age, atypical presentation, or absence of pathogenic mutations. The goals of the Longitudinal EOAD Study (LEADS) are to (1) define the clinical, imaging, and fluid biomarker characteristics of EOAD; (2) develop sensitive cognitive and biomarker measures for future clinical and research use; and (3) establish a trial- ready network. LEADS will follow 400 amyloid beta (Aβ)- positive EOAD, 200 Aβ- negative EOnonAD that meet National Institute on Aging- Alzheimer’s Association (NIA- AA) criteria for mild cognitive impairment (MCI) or AD dementia, and 100 age- matched controls. Participants will undergo clinical and cognitive assessments, magnetic resonance imaging (MRI), [18F]Florbetaben and [18F]Flortaucipir positron emission tomography (PET), lumbar puncture, and blood draw for DNA, RNA, plasma, serum and peripheral blood mononuclear cells, and post- mortem assessment. To develop more effective AD treatments, scientists need to understand the genetic, biological, and clinical processes involved in EOAD. LEADS will develop a public resource that will enable future planning and implementation of EOAD clinical trials.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otheryoung onset
dc.subject.otherYOAD
dc.subject.otherLEADS
dc.subject.otherEOAD
dc.subject.otherearly- onset
dc.subject.otherAlzheimer’s disease
dc.titleThe Longitudinal Early- onset Alzheimer’s Disease Study (LEADS): Framework and methodology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171607/1/alz12350.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171607/2/alz12350_am.pdf
dc.identifier.doi10.1002/alz.12350
dc.identifier.sourceAlzheimer’s & Dementia
dc.identifier.citedreferenceMcKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7 ( 3 ): 263 - 269.
dc.identifier.citedreferenceIshii K, Kawachi T, Sasaki H, et al. Voxel- based morphometric comparison between early- and late- onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. AJNR Am J Neuroradiol. 2005; 26 ( 2 ): 333 - 340.
dc.identifier.citedreferenceGrady CL, Hazby JV, Horwitz B, et al. Neuropsychological and cerebral metabolic function in early vs late onest dementia of the Alzheimer type. Neuropsychologia. 1987; 25 ( 5 ): 807 - 816.
dc.identifier.citedreferenceYasuno F, Imamura T, Hirono N, et al. Age at onset and regional cerebral glucose metabolism in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998; 9 ( 2 ): 63 - 67.
dc.identifier.citedreferenceSalmon E, Collette F, Degueldre C, et al. Voxel- based analysis of confounding effects of age and dementia severity on cerebral metabolism in Alzheimer’s disease. Hum Brain Mapp. 2000; 10 ( 1 ): 39 - 48.
dc.identifier.citedreferenceJagust WJ, Reed BR, Seab JP, et al. Alzheimer’s disease: age at onset and single- photon emission computed tomographic patterns of regional cerebral blood flow. Arch Neurol. 1990; 47: 628 - 633.
dc.identifier.citedreferenceKemp PM, Holmes C, Hoffmann SM, et al. Alzheimer’s disease: differences in technetium- 99m HMPAO SPECT scan findings between early onset and late onset dementia. J Neurol Neurosurg Psychiatry. 2003; 74 ( 6 ): 715 - 719.
dc.identifier.citedreferenceRabinovici GD, Furst AJ, Alkalay A, et al. Increased metabolic vulnerability in early- onset Alzheimer’s disease is not related to amyloid burden. Brain. 2010; 133 ( Pt 2 ): 512 - 528.
dc.identifier.citedreferenceMoller C, Vrenken H, Jiskoot L, et al. Different patterns of gray matter atrophy in early- and late- onset Alzheimer’s disease. Neurobiol Aging. 2013; 34 ( 8 ): 2014 - 2022.
dc.identifier.citedreferenceMann DM, Yates PO, Marcyniuk B. Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol. 1984; 10 ( 3 ): 185 - 207.
dc.identifier.citedreferenceHansen LA, DeTeresa R, Davies P, et al. Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer’s disease. Neurology. 1988; 38 ( 1 ): 48 - 54.
dc.identifier.citedreferenceNochlin D, van Belle G, Bird TD, et al. Comparison of the severity of neuropathologic changes in familial and sporadic Alzheimer’s disease. Alzheimer Dis Assoc Disord. 1993; 7 ( 4 ): 212 - 222.
dc.identifier.citedreferenceBigio EH, Hynan LS, Sontag E, et al. Synapse loss is greater in presenile than senile onset Alzheimer disease: implications for the cognitive reserve hypothesis. Neuropathol Appl Neurobiol. 2002; 28 ( 3 ): 218 - 227.
dc.identifier.citedreferenceHo GJ, Hansen LA, Alford MF, et al. Age at onset is associated with disease severity in Lewy body variant and Alzheimer’s disease. Neuroreport. 2002; 13 ( 14 ): 1825 - 1828.
dc.identifier.citedreferenceBerg L, McKeel DW Jr, Miller JP, et al. Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol. 1998; 55 ( 3 ): 326 - 335.
dc.identifier.citedreferenceMarshall GA, Fairbanks LA, Tekin S, et al. Early- onset Alzheimer’s disease is associated with greater pathologic burden. J Geriatr Psychiatry Neurol. 2007; 20 ( 1 ): 29 - 33.
dc.identifier.citedreferenceBird TD, Stranahan S, Sumi SM, et al. Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol. 1983; 14 ( 3 ): 284 - 293.
dc.identifier.citedreferenceRossor MN, Iversen LL, Reynolds GP, et al. Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J (Clin Res Ed). 1984; 288 ( 6422 ): 961 - 964.
dc.identifier.citedreferenceCampion D, Dumanchin C, Hannequin D, et al. Early- onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999; 65 ( 3 ): 664 - 670.
dc.identifier.citedreferenceJanssen JC, Beck JA, Campbell TA, et al. Early onset familial Alzheimer’s disease - Mutation frequency in 31 families. Neurology. 2003; 60 ( 2 ): 235 - 239.
dc.identifier.citedreferenceSignorini S, Ghidoni R, Barbiero L, et al. Prevalence of pathogenic mutations in an italian clinical series of patients with familial dementia. Curr Alzheimer Res. 2004; 1 ( 3 ): 215 - 218.
dc.identifier.citedreferenceCacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early- onset Alzheimer’s disease revisited. Alzheimers Dement. 2016; 12 ( 6 ): 733 - 748.
dc.identifier.citedreferenceWingo TS, Lah JJ, Levey AI, et al. Autosomal recessive causes likely in early- onset Alzheimer disease. Arch Neurol. 2012; 69 ( 1 ): 59 - 64.
dc.identifier.citedreferenceSzigeti K, Doody RS. Should EOAD patients be included in clinical trials?. Alzheimers Res Ther. 2011; 8 ( 3 ): 1 - 5.
dc.identifier.citedreferenceAlbert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging- Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7 ( 3 ): 270 - 279.
dc.identifier.citedreferenceCrutch SJ, Schott JM, Rabinovici GD, et al. Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017; 13 ( 8 ): 870 - 884.
dc.identifier.citedreferenceGorno- Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011; 76 ( 11 ): 1006 - 1014.
dc.identifier.citedreferenceVan der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43.
dc.identifier.citedreferenceStenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next- generation sequencing studies. Hum Genet. 2017; 136 ( 6 ): 665 - 677.
dc.identifier.citedreferenceLandrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018; 46 ( D1 ): D1062 - D1067.
dc.identifier.citedreferenceFokkema IF, Taschner PE, Schaafsma GC, et al. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat. 2011; 32 ( 5 ): 557 - 563.
dc.identifier.citedreferenceMills SM, Mallmann J, Santacruz AM, et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN- TU trial. Rev Neurol (Paris). 2013; 169 ( 10 ): 737 - 743.
dc.identifier.citedreferenceVemuri P, Senjem ML, Gunter JL, et al. Accelerated vs. unaccelerated serial MRI based TBM- SyN measurements for clinical trials in Alzheimer’s disease. Neuroimage. 2015; 113: 61 - 69.
dc.identifier.citedreferenceSabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015; 11 ( 8 ): 964 - 974.
dc.identifier.citedreferenceBejanin A, Tammewar G, Marx G, et al. Longitudinal structural and metabolic changes in frontotemporal dementia. Neurology. 2020; 95 ( 2 ): e140 - e154.
dc.identifier.citedreferenceChetelat G, Ossenkoppele R, Villemagne VL, et al. Atrophy, hypometabolism and clinical trajectories in patients with amyloid- negative Alzheimer’s disease. Brain. 2016; 139 ( Pt 9 ): 2528 - 2539.
dc.identifier.citedreferenceJagust WJ, Landau SM, Koeppe RA, et al. The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015. Alzheimers Dement. 2015; 11 ( 7 ): 757 - 771.
dc.identifier.citedreferenceBaker SL, Maass A, Jagust WJ. Considerations and code for partial volume correcting [(18)F]- AV- 1451 tau PET data. Data Brief. 2017; 15: 648 - 657.
dc.identifier.citedreferenceDiedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006; 33 ( 1 ): 127 - 138.
dc.identifier.citedreferenceDesikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006; 31 ( 3 ): 968 - 980.
dc.identifier.citedreferenceKlunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015; 11 ( 1 ): 1 - 15.e1- 4.
dc.identifier.citedreferenceJack CR Jr, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimers Dement. 2017; 13 ( 3 ): 205 - 216.
dc.identifier.citedreferenceRabinovici GD, Karlawish J, Knopman D, et al. Testing and disclosures related to amyloid imaging and Alzheimer’s disease: common questions and fact sheet summary. Alzheimers Dement. 2016; 12 ( 4 ): 510 - 515.
dc.identifier.citedreferenceFleisher AS, Pontecorvo MJ. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 2020; 77 ( 7 ): 829 - 839.
dc.identifier.citedreferenceOssenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018; 320 ( 11 ): 1151 - 1162.
dc.identifier.citedreferenceLa Joie R, Perrotin A, Barre L, et al. Region- specific hierarchy between atrophy, hypometabolism, and beta- amyloid (Abeta) load in Alzheimer’s disease dementia. J Neurosci. 2012; 32 ( 46 ): 16265 - 16273.
dc.identifier.citedreferenceBateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012; 367 ( 9 ): 795 - 804.
dc.identifier.citedreferenceShaw LM, Vanderstichele H, Knapik- Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009; 65 ( 4 ): 403 - 413.
dc.identifier.citedreferenceNakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid- beta biomarkers for Alzheimer’s disease. Nature. 2018; 554 ( 7691 ): 249 - 254.
dc.identifier.citedreferenceJanelidze S, Stomrud E, Palmqvist S, et al. Plasma beta- amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016; 6: 26801.
dc.identifier.citedreferenceLi D, Mielke MM. An update on blood- based markers of Alzheimer’s disease using the SiMoA platform. Neurol Ther. 2019; 8 (Suppl 2): 73 - 82.
dc.identifier.citedreferencePalmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease- related beta- amyloid status. JAMA Neurol. 2019; 76 ( 9 ): 1060 - 1069.
dc.identifier.citedreferenceSchindler SE, Bollinger JG, Ovod V, et al. High- precision plasma beta- amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019; 93 ( 17 ): e1647 - e1659.
dc.identifier.citedreferenceChatterjee P, Elmi M, Goozee K, et al. Ultrasensitive detection of plasma Amyloid- beta as a biomarker for cognitively normal elderly individuals at risk of Alzheimer’s disease. J Alzheimers Dis 2019; 71 ( 3 ): 775 - 83
dc.identifier.citedreferenceHyman BT, Phelps CH, Beach TG, et al. National Institute on Aging- Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012; 8 ( 1 ): 1 - 13.
dc.identifier.citedreferenceHastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. NY: Springer; 2009.
dc.identifier.citedreferenceAlzheimer Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15 ( 3 ): 321 - 387.
dc.identifier.citedreferenceAlzheimer Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement 2020; 16 ( 3 ): 391 - 460.
dc.identifier.citedreferencevan Vliet D, de Vugt ME, Bakker C, et al. Impact of early onset dementia on caregivers: a review. Int J Geriatr Psychiatry. 2010; 25 ( 11 ): 1091 - 1100.
dc.identifier.citedreferenceWerner P, Stein- Shvachman I, Korczyn AD. Early onset dementia: clinical and social aspects. Int Psychogeriatr. 2009; 21 ( 4 ): 631 - 636.
dc.identifier.citedreferenceBeach TG, Monsell SE, Phillips LE, et al. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005- 2010. J Neuropathol Exp Neurol. 2012; 71 ( 4 ): 266 - 273.
dc.identifier.citedreferenceCrutch SJ, Lehmann M, Schott JM, et al. Posterior cortical atrophy. Lancet Neurol. 2012; 11 ( 2 ): 170 - 178.
dc.identifier.citedreferenceAlladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer’s disease. Brain. 2007; 130 ( Pt 10 ): 2636 - 2645.
dc.identifier.citedreferenceForman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006; 59 ( 6 ): 952 - 962.
dc.identifier.citedreferenceKertesz A, McMonagle P, Blair M, et al. The evolution and pathology of frontotemporal dementia. Brain. 2005; 128 ( Pt 9 ): 1996 - 2005.
dc.identifier.citedreferenceVarma AR, Snowden JS, Lloyd JJ, et al. Evaluation of the NINCDS- ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1999; 66 ( 2 ): 184 - 188.
dc.identifier.citedreferenceSeltzer B, Sherwin I. A comparison of clinical features in early- and late- onset primary degenerative dementia. One entity or two?. Arch Neurol. 1983; 40 ( 3 ): 143 - 146.
dc.identifier.citedreferenceBarclay LL, Zemcov A, Blass JP, et al. Factors associated with duration of survival in Alzheimer’s disease. Biol Psychiatry. 1985; 20 ( 1 ): 86 - 93.
dc.identifier.citedreferenceJacobs D, Sano M, Marder K, et al. Age at onset of Alzheimer’s disease: relation to pattern of cognitive dysfunction and rate of decline. Neurology. 1994; 44: 1215 - 1220.
dc.identifier.citedreferenceKoss E, Edland S, Fillenbaum G, et al. Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer’s disease: a CERAD analysis, Part XII. Neurology. 1996; 46 ( 1 ): 136 - 141.
dc.identifier.citedreferenceMortimer JA, Ebbitt B, Jun SP, et al. Predictors of cognitive and functional progression in patients with probable Alzheimer’s disease. Neurology. 1992; 42 ( 9 ): 1689 - 1696.
dc.identifier.citedreferenceHeyman A, Wilkinson WE, Hurwitz BJ, et al. Early- onset Alzheimer’s disease: clinical predictors of institutionalisation and death. Neurology. 1987; 27: 980 - 984.
dc.identifier.citedreferenceLoring DW, Largen JW. Neuropsychological patterns of presenile and senile dementia of the Alzheimer type. Neuropsychologia. 1985; 23 ( 3 ): 351 - 357.
dc.identifier.citedreferenceFilley CM, Kelly J, Heaton RK. Neuropsychologic features of early- and late- onset Alzheimer’s disease. Arch Neurol. 1986; 43 ( 6 ): 574 - 576.
dc.identifier.citedreferenceImamura T, Takatsuki Y, Fujimori M, et al. Age at onset and language disturbances in Alzheimer’s disease. Neuropsychologia. 1998; 36 ( 9 ): 945 - 949.
dc.identifier.citedreferenceFujimori M, Imamura T, Yamashita H, et al. Age at onset and visuocognitive disturbances in Alzheimer disease. Alzheimer Dis Assoc Disord. 1998; 12 ( 3 ): 163 - 166.
dc.identifier.citedreferenceFrisoni GB, Pievani M, Testa C, et al. The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain. 2007; 130 ( Pt 3 ): 720 - 730.
dc.identifier.citedreferenceKim EJ, Cho SS, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain. 2005; 128 ( Pt 8 ): 1790 - 1801.
dc.identifier.citedreferenceSnowden JS, Stopford CL, Julien CL, et al. Cognitive phenotypes in Alzheimer’s disease and genetic risk. Cortex. 2007; 43 ( 7 ): 835 - 845.
dc.identifier.citedreferenceBinetti G, Magni E, Padovani A, et al. Neuropsychological heterogeneity in mild Alzheimer’s disease. Dementia. 1993; 4 ( 6 ): 321 - 326.
dc.identifier.citedreferenceFrisoni GB, Testa C, Sabattoli F, et al. Structural correlates of early and late onset Alzheimer’s disease: voxel based morphometric study. J Neurol Neurosurg Psychiatry. 2005; 76 ( 1 ): 112 - 114.
dc.identifier.citedreferenceKoedam EL, Lauffer V, van der Vlies AE, et al. Early- versus late- onset Alzheimer’s disease: more than age alone. J Alzheimers Dis. 2010; 19 ( 4 ): 1401 - 1408.
dc.identifier.citedreferenceMendez MF, Lee AS, Joshi A, et al. Nonamnestic presentations of early- onset Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2012; 27 ( 6 ): 413 - 420.
dc.identifier.citedreferenceSakamoto S, Ishii K, Sasaki M, et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J Neurol Sci. 2002; 200 ( 1- 2 ): 27 - 32.
dc.identifier.citedreferenceShiino A, Watanabe T, Kitagawa T, et al. Different atrophic patterns in early- and late- onset Alzheimer’s disease and evaluation of clinical utility of a method of regional z- score analysis using voxel- based morphometry. Dement Geriatr Cogn Disord. 2008; 26 ( 2 ): 175 - 186.
dc.identifier.citedreferenceShiino A, Watanabe T, Maeda K, et al. Four subgroups of Alzheimer’s disease based on patterns of atrophy using VBM and a unique pattern for early onset disease. Neuroimage. 2006; 33 ( 1 ): 17 - 26.
dc.identifier.citedreferenceKaras G, Scheltens P, Rombouts S, et al. Precuneus atrophy in early- onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology. 2007; 49 ( 12 ): 967 - 976.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.