Show simple item record

Investigation of nonlinear photoacoustic microscopy using a low‐cost infrared lamp

dc.contributor.authorSeong, Myeongsu
dc.contributor.authorYang, Wenzhao
dc.contributor.authorHan, Yujie
dc.contributor.authorZhou, Jiasheng
dc.contributor.authorJing, Lili
dc.contributor.authorChen, Sung-Liang
dc.date.accessioned2022-04-08T18:08:32Z
dc.date.available2023-05-08 14:08:30en
dc.date.available2022-04-08T18:08:32Z
dc.date.issued2022-04
dc.identifier.citationSeong, Myeongsu; Yang, Wenzhao; Han, Yujie; Zhou, Jiasheng; Jing, Lili; Chen, Sung-Liang (2022). "Investigation of nonlinear photoacoustic microscopy using a low‐cost infrared lamp." Journal of Biophotonics 15(4): n/a-n/a.
dc.identifier.issn1864-063X
dc.identifier.issn1864-0648
dc.identifier.urihttps://hdl.handle.net/2027.42/172100
dc.description.abstractNonlinear photoacoustic microscopy (PAM) is a novel approach to enhance contrast and resolution. In this study, a low‐cost infrared (IR) lamp as a simple approach for nonlinear PAM is demonstrated. Numerical simulations are first performed to verify the nonlinear photoacoustic effect under steady heating for two cases: (a) Differentiation of absorbers with different Grüneisen coefficients; (b) enhancement of photoacoustic amplitude. Then, sets of experiments are conducted to experimentally demonstrate our proposed approach: (a) Longitudinal monitoring of photoacoustic A‐line signals from two samples, porcine tissue ex vivo and hemoglobin and indocyanine green (ICG) solutions in tubes in vitro for demonstrating the above‐mentioned two cases; (b) PAM imaging of hemoglobin and ICG solutions in tubes before and after IR lamp heating. Different signal change and amplitude enhancement are observed in different demonstrations, showing the efficacy of the proposed approach. By virtue of cost‐effectiveness and decent performance, our work facilitates nonlinear PAM studies.A low‐cost infrared lamp‐aided photoacoustic microscopy (PAM) is investigated as a simple alternative to nonlinear PAM, which is based on the temperature‐dependent Grüneisen coefficient. After steady heating of both the sample and surrounding, photoacoustic amplitude varies depending on the change of Grüneisen coefficient, which can be utilized for differentiation of different absorbers and enhancement of photoacoustic amplitude. In this work, a variety of samples are used for demonstration.
dc.publisherWILEY‐VCH Verlag GmbH & Co. KGaA
dc.subject.otherinfrared heating
dc.subject.otherinfrared lamp
dc.subject.otherlow‐cost
dc.subject.othernonlinear photoacoustic effect
dc.subject.otherphotoacoustic imaging
dc.subject.otherphotoacoustic microscopy
dc.titleInvestigation of nonlinear photoacoustic microscopy using a low‐cost infrared lamp
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172100/1/jbio202100301_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172100/2/jbio202100301.pdf
dc.identifier.doi10.1002/jbio.202100301
dc.identifier.sourceJournal of Biophotonics
dc.identifier.citedreferenceS. A. López‐Haro, M. I. Gutiérrez, A. Vera, L. Leija, J. Med. Ultrason. 2015, 42, 489. https://doi.org/10.1007/s10396-015-0643-3.
dc.identifier.citedreferenceW. Wang, A. Mandelis, J. Biomed. Opt. 2016, 21, 066018. https://doi.org/10.1117/1.JBO.21.9.096010.
dc.identifier.citedreferenceW. Wang, A. Mandelis, Int. J. Thermophys. 2016, 37, 74.
dc.identifier.citedreferenceW. Wang, A. Mandelis, Biomed. Opt. Express 2014, 5, 2785. https://doi.org/10.1364/BOE.5.002785.
dc.identifier.citedreferenceI. V. Larina, K. V. Larin, R. O. Esenaliev, J. Phys. D: Appl. Phys. 2005, 38, 2633. https://doi.org/10.1088/0022-3727/38/15/015.
dc.identifier.citedreferenceB. E. Treeby, B. T. Cox, J. Biomed. Opt. 2010, 15, 21314.
dc.identifier.citedreferenceV. K. Nagarajan, B. Yu, Lasers Surg. Med. 2016, 48, 686. https://doi.org/10.1002/lsm.22541.
dc.identifier.citedreferenceK. M. Sørensen, S. B. Engelsen, J. Near Infrared Spectrosc. 2017, 25, 45. https://doi.org/10.1177/0967033516685548.
dc.identifier.citedreferenceR. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, R. Cubeddu, in Biomed. Top. Meet., OSA, Miami Beach, FL, 2004, p. SF4.
dc.identifier.citedreferenceR. M. Pope, E. S. Fry, Appl. Optics 1997, 36, 8710. https://doi.org/10.1364/AO.36.008710.
dc.identifier.citedreferenceS. Prahl, S. Jacques, https://omlc.org/ (accessed: September 2020). https://doi.org/10.1101/2021.12.09.21267423.
dc.identifier.citedreferenceT. C. Polachini, L. F. L. Betiol, M. G. Bastos, V. R. N. Telis, A. C. de Souza, J. Telis‐Romero, Can. J. Chem. Eng. 2016, 94, 988. https://doi.org/10.1002/cjce.22468.
dc.identifier.citedreferenceB. Fricke, B. Becker, HVAC&R Res. 2001, 7, 311. https://doi.org/10.1080/10789669.2001.10391278.
dc.identifier.citedreferenceW. Wang, Signal Strength and SNR Enhancement Techniques for Frequency Domain Photoacoustic Radar Imaging, University of Toronto, Canada 2016.
dc.identifier.citedreferenceG. S. Kell, J. Chem. Eng. Data 1975, 20, 97. https://doi.org/10.1021/je60064a005.
dc.identifier.citedreferenceN. Bilaniuk, G. S. K. Wong, J. Acoust. Soc. Am. 1993, 93, 1609.
dc.identifier.citedreferenceD. Cai, Z. Li, Y. Li, Z. Guo, S.‐L. Chen, Opt. Express 2017, 25, 1421. https://doi.org/10.1364/OE.25.001421.
dc.identifier.citedreferenceC. Yeh, B. Soetikno, S. Hu, K. I. Maslov, L. V. Wang, J. Biomed. Opt. 2014, 19, 096011. https://doi.org/10.1117/1.JBO.19.9.096011.
dc.identifier.citedreferenceZ. Guo, Y. Li, S.‐L. Chen, Opt. Lett. 2018, 43, 1119. https://doi.org/10.1364/OL.43.001119.
dc.identifier.citedreferenceZ. Ye, P. K. Srivastava, Y. Xu, W. Wang, L. Jing, S.‐L. Chen, C.‐C. Tu, ACS Appl. Nano Mater. 2019, 2, 7577. https://doi.org/10.1021/acsanm.9b01682.
dc.identifier.citedreferenceJ. Wang, B. W. Pogue, S. Jiang, K. D. Paulsen, Opt. Lett. 2010, 35, 82. https://doi.org/10.1364/OL.35.000082.
dc.identifier.citedreferenceA. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, J. Biomed. Opt. 2006, 11, 044005. https://doi.org/10.1117/1.2337546.
dc.identifier.citedreferenceN. T. Sanghvi, W.‐H. Chen, R. Carlson, C. Weis, R. Seip, T. Uchida, M. Marberger, J. Ther. Ultrasound. 2017, 5, 24.
dc.identifier.citedreferenceA. Worthington, P. Peng, K. Rod, V. Bril, J. Tavakkoli, IEEE J. Transl. Eng. Health Med. 2016, 4, 1. https://doi.org/10.1109/JTEHM.2016.2581811.
dc.identifier.citedreferenceH. Wang, X. Li, B. W.‐C. Tse, H. Yang, C. A. Thorling, Y. Liu, M. Touraud, J. B. Chouane, X. Liu, M. S. Roberts, X. Liang, Theranostics 2018, 8, 1227. https://doi.org/10.7150/thno.22872.
dc.identifier.citedreferenceA. Fernandez‐Fernandez, R. Manchanda, T. Lei, D. A. Carvajal, Y. Tang, S. Z. R. Kazmi, A. J. McGoron, Mol. Imaging 2012, 11, 99. https://doi.org/10.2310/7290.2011.00031.
dc.identifier.citedreferenceV. Saxena, M. Sadoqi, J. Shao, J. Pharm. Sci. 2003, 92, 2090. https://doi.org/10.1002/jps.10470.
dc.identifier.citedreferenceL. Wang, C. Zhang, L. V. Wang, Phys. Rev. Lett. 2014, 113, 174301. https://doi.org/10.1103/PhysRevLett.113.266101.
dc.identifier.citedreferenceJ. Ma, J. Shi, P. Hai, Y. Zhou, L. V. Wang, J. Biomed. Opt. 2016, 21, 066005. https://doi.org/10.1117/1.JBO.21.6.066005.
dc.identifier.citedreferenceX. Liu, T. T. W. Wong, J. Shi, J. Ma, Q. Yang, L. V. Wang, Opt. Lett. 2018, 43, 947, https://doi.org/10.1364/OL.43.000947.
dc.identifier.citedreferenceL. V. Wang, J. Yao, Nat. Methods 2016, 13, 627. https://doi.org/10.1038/nmeth.3925.
dc.identifier.citedreferenceJ. Yao, L. V. Wang, Photoacoustics 2014, 2, 87. https://doi.org/10.1016/j.pacs.2014.04.002.
dc.identifier.citedreferenceM. Seong, S.‐L. Chen, Sci. China Life Sci. 2020, 63, 1798. https://doi.org/10.1007/s11427-019-1628-7.
dc.identifier.citedreferenceJ. Shi, C. Li, H. Mao, Y. Ren, Z.‐C. Luo, A. Rosenthal, K. K. Y. Wong, Opt. Lett. 2020, 45, 3268. https://doi.org/10.1364/OL.393780.
dc.identifier.citedreferenceF. Gao, X. Feng, R. Zhang, S. Liu, R. Ding, R. Kishor, Y. Zheng, Sci. Rep. 2017, 7, 626.
dc.identifier.citedreferenceH. Lan, T. Duan, D. Jiang, H. Zhong, M. Zhou, F. Gao, IEEE Sensors J. 2019, 19, 5559. https://doi.org/10.1109/JSEN.2019.2902849.
dc.identifier.citedreferenceT. Duan, H. Lan, H. Zhong, M. Zhou, R. Zhang, F. Gao, Opt. Lett. 2018, 43, 5611, https://doi.org/10.1364/OL.43.005611.
dc.identifier.citedreferenceA. Thomas, S. Paul, J. Mitra, M. S. Singh, Sensors 2021, 21, 1190. https://doi.org/10.3390/s21041190.
dc.identifier.citedreferenceF. Gao, X. Feng, Y. Zheng, Appl. Phys. Lett. 2014, 104, 213701.
dc.identifier.citedreferenceY. Yamaoka, M. Nambu, T. Takamatsu, Opt. Express 2011, 19, 13365. https://doi.org/10.1364/OE.19.013365.
dc.identifier.citedreferenceZ. Zhang, Y. Shi, S. Yang, D. Xing, Opt. Lett. 2018, 43, 2336. https://doi.org/10.1364/OL.43.002336.
dc.identifier.citedreferenceO. Simandoux, A. Prost, J. Gateau, E. Bossy, Photoacoustics 2015, 3, 20. https://doi.org/10.1016/j.pacs.2014.12.002.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.