Show simple item record

Fabrication and characterization of osteogenic function of progenitor cell-laden gelatin microcarriers

dc.contributor.authorNweke, Chukwuma E.
dc.contributor.authorStegemann, Jan P.
dc.date.accessioned2022-05-06T17:26:25Z
dc.date.available2023-07-06 13:26:23en
dc.date.available2022-05-06T17:26:25Z
dc.date.issued2022-06
dc.identifier.citationNweke, Chukwuma E.; Stegemann, Jan P. (2022). "Fabrication and characterization of osteogenic function of progenitor cell-laden gelatin microcarriers." Journal of Biomedical Materials Research Part B: Applied Biomaterials 110(6): 1265-1278.
dc.identifier.issn1552-4973
dc.identifier.issn1552-4981
dc.identifier.urihttps://hdl.handle.net/2027.42/172268
dc.description.abstractBiomaterial-based bone regeneration strategies often include a cellular component to accelerate healing. Modular approaches have the potential for minimally-invasive delivery and the ability to conformally fill complex defects. In this study, spherical gelatin microparticles were fabricated via water-in-oil emulsification and were subsequently crosslinked with genipin. Microparticle diameter depended on impeller geometry, and increased stirring rates consistently produced smaller particles with narrower size distributions. Increasing the concentration of gelatin resulted in larger particles with a broader size distribution. Viscoelastic characterization showed that increased gelatin concentration produced stiffer matrices, though the mechanical properties at lower gelatin concentration were more stable across strain rate. Microparticles of 6.0% wt/vol gelatin were then applied as microcarriers for packed-bed culture of human mesenchymal stromal cells (MSC) at seeding densities of 5.0 × 103, 2.5 × 104, or 5.0 × 104 cells/cm2 of surface area, in either control or osteogenic medium. Cell viability was uniformly high (>90%) across seeding densities over 22 days in culture. MSC number stayed approximately constant in the 5.0 × 103 and 2.5 × 104 cells/cm2 samples, while it dropped over time at 5.0 × 104 cells/cm2. Alkaline phosphatase activity was significantly upregulated in osteogenic conditions relative to controls at day 15, and absolute calcium deposition was strongly induced by days 15 and 22. However, calcium deposition per cell was highest in the lowest cell density, suggesting an inhibitory effect of high cell numbers. These results show that genipin-crosslinked gelatin microcarriers can be reproducibly fabricated and used as microcarriers for progenitor cells, which may have utility in treating large and complex bone defects.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherstem/progenitor cells
dc.subject.othermicrospheres
dc.subject.othermodular
dc.subject.otherosteogenesis
dc.subject.otherregenerative medicine
dc.titleFabrication and characterization of osteogenic function of progenitor cell-laden gelatin microcarriers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelBiomedical Engineering Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172268/1/jbmb34998.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172268/2/jbmb34998_am.pdf
dc.identifier.doi10.1002/jbm.b.34998
dc.identifier.sourceJournal of Biomedical Materials Research Part B: Applied Biomaterials
dc.identifier.citedreferenceSaito E, Suarez-Gonzalez D, Rao RR, Stegemann JP, Murphy WL, Hollister SJ. Use of micro-computed tomography to nondestructively characterize biomineral coatings on solid freeform fabricated poly (L-lactic acid) and polycaprolactone scaffolds in vitro and in vivo. Tissue Eng Part C Meth. 2013; 19 ( 7 ): 507 - 517.
dc.identifier.citedreferenceAnnamalai RT, Naik T, Prout H, Putnam AJ, Stegemann JP. Biofabrication of injectable fibrin microtissues for minimally-invasive therapies: application of surfactants. Biomed Mater. 2018; 13 ( 4 ): 045005.
dc.identifier.citedreferenceHwang YJ, Larsen J, Krasieva TB, Lyubovitsky JG. Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels. ACS Appl Mater Interfaces. 2011; 3: 2579 - 2584.
dc.identifier.citedreferenceBabur BK, Futrega K, Lott WB, Klein TJ, Cooper-White J, Doran MR. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Cell Tissue Res. 2015; 361: 755 - 768.
dc.identifier.citedreferenceMan W, Donev A, Stillinger FH, et al. Experiments on random packings of ellipsoids. Phys Rev Lett. 2005; 94: 198001.
dc.identifier.citedreferenceBaule A, Makse HA. Fundamental challenges in packing problems: from spherical to non-spherical particles. Soft Matter. 2014; 10: 4423 - 4429.
dc.identifier.citedreferenceShapoff CA, Bowers GM, Levy B, Mellonig JT, Yukna RA. The effect of particle size on the osteogenic activity of composite grafts of allogeneic freeze-dried bone and autogenous marrow. J Periodontol. 1980; 29: 33 - 41.
dc.identifier.citedreferenceLeiblein M, Koch E, Winkenbach A, et al. Size matters: effect of granule size of the bone graft substitute (Herafill®) on bone healing using Masquelet’s induced membrane in a critical size defect model in the rat’s femur. J Biomed Mater Res Part B Appl Biomater. 1980; 29: 33 - 41.
dc.identifier.citedreferenceHandorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015; 11 ( 1 ): 1 - 15.
dc.identifier.citedreferenceVining KH, Mooney DH. Mechanical forces direct stem cell behavior in development and regeneration. Nat Rev Mol Cell Biol. 2017; 18: 728 - 742.
dc.identifier.citedreferenceButcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009; 9: 108 - 122.
dc.identifier.citedreferenceCox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011; 4 ( 2 ): 165 - 178.
dc.identifier.citedreferenceRuiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008; 26: 2921 - 2927.
dc.identifier.citedreferenceEngler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126: 677 - 689.
dc.identifier.citedreferenceLin L, Regenstein JM, Lv S, Lu J, Jiang S. An overview of gelatin derived from aquatic animals: properties and modification. Trends Food Sci Technol. 2017; 68: 102 - 112.
dc.identifier.citedreferenceNathia-Neves G, Meireles MAA. Genipap: a new perspective on natural colorants for the food industry. Food Public Heal. 2018; 8 ( 1 ): 21 - 33.
dc.identifier.citedreferenceCho YJ, Kim SY, Kim J, Choe EK, Kim SI, Shin HJ. One-step enzymatic synthesis of blue pigments from Geniposide for fabric dyeing. Biotechnol Bioprocess Eng. 2006; 11: 230 - 234.
dc.identifier.citedreferenceWissemann KW, Jacobson BS. Pure gelatin microcarriers: synthesis and use in cell attachment and growth of fibroblast and endothelial cells. In Vitro Cellul Dev Biol. 1985; 21: 391 - 401.
dc.identifier.citedreferenceYao L, Phan F, Li Y. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Res Ther. 2013; 4: 109.
dc.identifier.citedreferenceBello AB, Kim D, Kim D, Park H, Lee SH. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020; 26: 2 - 180.
dc.identifier.citedreferenceTsai HH, Yang KC, Wu MH, Chen JC, Tseng CL. The effects of different dynamic culture systems on cell proliferation and osteogenic differentiation in human mesenchymal stem cells. Int J Mol Sci. 2019; 20 ( 16 ): 4024.
dc.identifier.citedreferenceVimalraj S. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene. 2020; 754: 144855.
dc.identifier.citedreferenceTseng PC, Young TH, Wang TM, Peng HW, Hou SM, Yen ML. Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension. Biomaterials. 2011; 33 ( 2 ): 556 - 564.
dc.identifier.citedreferenceShadjou N, Hasanzadeh M. Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process. J Biomed Mater Res B. 2015; 103 ( 11 ): 3703 - 3716.
dc.identifier.citedreferenceRoberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012; 8: 114 - 124.
dc.identifier.citedreferenceFernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018; 9: 1 - 18.
dc.identifier.citedreferenceVerrier S, Alini M, Alsberg E, et al. Tissue engineering and regenerative approaches to improving the healing of large bone defects. Eur Cell Mater. 2016; 32: 87 - 110.
dc.identifier.citedreferencePerez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol. 2018; 6: 105.
dc.identifier.citedreferenceLin H, Sohn J, Shen H, Langhans MT, Tuan RS. Bone marrow stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials. 2019; 203: 96 - 110.
dc.identifier.citedreferenceSobacchi C, Erreni M, Strina D, Palagano E, Villa A, Menale C. 3D bone biomimetic scaffolds for basic and translational studies with mesenchymal stem cells. Int J Mol Sci. 2018; 19 ( 10 ): 3150.
dc.identifier.citedreferencePajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019; 196: 80 - 89.
dc.identifier.citedreferenceHumbert P, Brennan MA, Davison N, et al. Immune modulation by transplanted calcium phosphate biomaterials and human mesenchymal stromal cells in bone regeneration. Front Immunol. 2019; 10: 663.
dc.identifier.citedreferencePresen DM, Traweger A, Gimona M, Redl H. Mesenchymal stromal cell-based bone regeneration therapies: from cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol. 2019; 7: 352.
dc.identifier.citedreferenceRao RR, Stegemann JP. Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy. 2013; 15 ( 11 ): 1309 - 1322.
dc.identifier.citedreferenceChen AKL, Reuveny S, Oh SKW. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv. 2013; 31: 1032 - 1046.
dc.identifier.citedreferenceKim HW, Yoon BH, Kim HE. Microsphere of apatite-gelatin nanocomposite as bone regenerative filler. J Mater Sci Mater Med. 2005; 16: 1105 - 1109.
dc.identifier.citedreferenceNweke CE, Stegemann JP. Modular microcarrier technologies for cell-based bone regeneration. J Mater Chem B. 2020; 8 ( 18 ): 3972 - 3984.
dc.identifier.citedreferenceRao RR, Vigen ML, Peterson AW, Caldwell DJ, Putnam AJ, Stegemann JP. Dual-phase osteogenic and vasculogenic engineered tissue for bone formation. Tissue Eng Part A. 2015; 21 ( 3–4 ): 530 - 540.
dc.identifier.citedreferenceChao SC, Wang MJ, Pai NS, Yen SK. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair. Mater Sci Eng C. 2015; 57: 113 - 122.
dc.identifier.citedreferencePetruskevicius J, Nielsen S, Kaalund S, Knudsen PR, Overgaard S. No effect of Osteoset®, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study. Acta Orthop Scand. 2002; 73: 575 - 578.
dc.identifier.citedreferenceChen XY, Chen JY, Tong XM, Mei JG, Chen YF, Mou XZ. Recent advances in the use of microcarriers for cell cultures and their ex vivo and in vivo applications. Biotechnol Lett. 2020; 42 ( 1 ): 1 - 10.
dc.identifier.citedreferenceOrnelas-Gonzalez A, Gonzalez-Gonzalez M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol. 2021; 41 ( 7 ): 1081 - 1095.
dc.identifier.citedreferenceSaltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: a review. J Biomed Mater Res B. 2016; 104 ( 5 ): 1276 - 1284.
dc.identifier.citedreferenceGhomi ER, Nourbaksh N, Kenari MA, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B. 2021; 109 ( 12 ): 1986 – 1999.
dc.identifier.citedreferenceBallouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. J Biomed Mater Res B. 2021; 109: 1426 - 1435.
dc.identifier.citedreferenceHsu FY, Chueh SC, Wang YJ. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials. 1999; 20: 1931 - 1936.
dc.identifier.citedreferenceBliatsiou C, Malik A, Böhm L. Influence of impeller geometry on hydromechanical stress in stirred liquid/liquid dispersions. Ind Eng Chem Res. 2018; 58 ( 7 ): 2537 - 2550.
dc.identifier.citedreferenceGoncharenko AV, Kotlyarova MS, Moisenovich AM, et al. Osteogenic differentiation of mouse bone marrow stromal cells on fibroin microcarriers. Doklady Biochem Biophys. 2017; 477: 345 - 348.
dc.identifier.citedreferenceBarrias CC, Ribeiro CC, Lamghari M, Miranda CS, Barbosa MA. Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res Part A. 2005; 72 ( 1 ): 57 - 66.
dc.identifier.citedreferenceOverstreet M, Sohrabi A, Polotsky A, Hungerford DS, Frondoza CG. Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins. In Vitro Cell Dev Biol Animal. 2003; 39: 228 - 234.
dc.identifier.citedreferenceSart S, Errachid A, Schneider YJ, Agathos SN. Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. J Tissue Eng Regen Med. 2013; 7: 537 - 551.
dc.identifier.citedreferenceYang Y, Rossi FM, Putnins EE. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials. 2007; 28: 3110 - 3120.
dc.identifier.citedreferencePerez RA, Riccardi K, Altankov G, Ginebra MP. Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications. J Tissue Eng. 2014; 5: 965.
dc.identifier.citedreferenceLau TT, Wang C, Wang DA. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos Sci Technol. 2010; 70 ( 13 ): 1909 - 1914.
dc.identifier.citedreferenceLau TT, Wang C, Peng SW, Su K, Wang DA. Genipin-crosslinked microcarriers mediating hepatocellular aggregates formation and functionalities. J Biomed Mater Res A. 2010; 96 ( 1 ): 204 - 211.
dc.identifier.citedreferenceLau TT, Lee LQP, Leong W, Wang DA. Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers. Biomed Mater. 2012; 7: 065003.
dc.identifier.citedreferenceSolorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP. Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med. 2010; 4 ( 7 ): 514 - 523.
dc.identifier.citedreferenceTurner PA, Thiele JS, Stegemann JP. Growth factor sequestration and enzyme-mediated release from genipin-crosslinked gelatin microspheres. J Biomater Sci Polym Ed. 2017; 28: 1826 - 1846.
dc.identifier.citedreferenceAnnamalai RT, Turner PA, Carson WF IV, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control. Biomaterials. 2018; 161: 216 - 227.
dc.identifier.citedreferenceVo TN, Shah SR, Lu S, et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials. 2016; 83: 1 - 11.
dc.identifier.citedreferenceKim HW, Gu HJ, Lee HH. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering. Tissue Eng. 2007; 13: 965 - 973.
dc.identifier.citedreferenceLuetchford KA, Chaudhuri JB, Paul A. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Mater Sci Eng C. 2020; 106: 110116.
dc.identifier.citedreferenceShen S, Fu D, Xu F, Long T, Hong F, Wang J. The design and features of apatite-coated chitosan microspheres as injectable scaffold for bone tissue engineering. Biomed Mater. 2013; 8: 025007.
dc.identifier.citedreferenceAnnamalai RT, Hong X, Schott NG, Tiruchinapally G, Levi B, Stegemann JP. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials. 2019; 208: 32 - 44.
dc.identifier.citedreferencePerez RA, Del Valle S, Altankov G, Ginebra MP. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. J Biomed Mater Res Part B Appl Biomater. 2011; 97 ( 1 ): 156 - 166.
dc.identifier.citedreferenceCuzmar E, Perez RA, Manzanares MC, Ginebra MP, Franch J. In vivo osteogenic potential of biomimetic hydroxyapatite/collagen microspheres: comparison with injectable cement pastes. PLoS One. 2015; 10 ( 7 ): e0131188.
dc.identifier.citedreferenceHsu FY, Tsai SW, Lan CW, Wang YJ. An in vivo study of a bone grafting material consisting of hydroxyapatite and reconstituted collagen. J Mater Sci Mater Med. 2005; 16 ( 4 ): 341 - 345.
dc.identifier.citedreferenceDosta P, Ferber S, Zhang Y, et al. Scale-up manufacturing of gelatin-based microcarriers for cell therapy. J Biomed Mater Res B Appl Biomater. 2020; 108: 2937 - 2949.
dc.identifier.citedreferenceHayashi K, Tabata Y. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater. 2011; 7: 2797 - 2803.
dc.identifier.citedreferenceYang G, Xiao Z, Long H, Ma K, Zhang J. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018; 8 ( 1 ): 1 - 3.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.