Show simple item record

Muscle mass affects paclitaxel systemic exposure and may inform personalized paclitaxel dosing

dc.contributor.authorHertz, Daniel L.
dc.contributor.authorChen, Li
dc.contributor.authorHenry, N. Lynn
dc.contributor.authorGriggs, Jennifer J.
dc.contributor.authorHayes, Daniel F.
dc.contributor.authorDerstine, Brian A.
dc.contributor.authorSu, Grace L.
dc.contributor.authorWang, Stewart C.
dc.contributor.authorPai, Manjunath P.
dc.date.accessioned2022-07-05T21:01:24Z
dc.date.available2023-08-05 17:01:22en
dc.date.available2022-07-05T21:01:24Z
dc.date.issued2022-07
dc.identifier.citationHertz, Daniel L.; Chen, Li; Henry, N. Lynn; Griggs, Jennifer J.; Hayes, Daniel F.; Derstine, Brian A.; Su, Grace L.; Wang, Stewart C.; Pai, Manjunath P. (2022). "Muscle mass affects paclitaxel systemic exposure and may inform personalized paclitaxel dosing." British Journal of Clinical Pharmacology 88(7): 3222-3229.
dc.identifier.issn0306-5251
dc.identifier.issn1365-2125
dc.identifier.urihttps://hdl.handle.net/2027.42/172972
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpharmacokinetics
dc.subject.othertherapeutic drug monitoring
dc.subject.othermodelling and simulation
dc.subject.othermorphomics
dc.subject.othermuscle mass
dc.subject.otherpaclitaxel
dc.subject.otherperipheral neuropathy
dc.subject.othersarcopenia
dc.titleMuscle mass affects paclitaxel systemic exposure and may inform personalized paclitaxel dosing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172972/1/bcp15244.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172972/2/bcp15244_am.pdf
dc.identifier.doi10.1111/bcp.15244
dc.identifier.sourceBritish Journal of Clinical Pharmacology
dc.identifier.citedreferenceJoerger M, Huitema ADR, van den Bongard DHJG, Schellens JHM, Beijnen JH. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of paclitaxel in patients with solid tumors. Clin Cancer Res. 2006; 12 ( 7 ): 2150 - 2157. doi: 10.1158/1078-0432.CCR-05-2069
dc.identifier.citedreferencede Graan A-JM, Elens L, Sprowl JA, et al. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res. 2013; 19 ( 12 ): 3316 - 3324. doi: 10.1158/1078-0432.CCR-12-3786
dc.identifier.citedreferenceMielke S, Sparreboom A, Steinberg SM, et al. Association of paclitaxel pharmacokinetics with the development of peripheral neuropathy in patients with advanced cancer. Clin Cancer Res. 2005; 11 ( 13 ): 4843 - 4850. doi: 10.1158/1078-0432.CCR-05-0298
dc.identifier.citedreferenceJoerger M, von Pawel J, Kraff S, et al. Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2016; 27 ( 10 ): 1895 - 1902. doi: 10.1093/annonc/mdw290
dc.identifier.citedreferenceZhang J, Zhou F, Qi H, et al. Randomized study of individualized pharmacokinetically-guided dosing of paclitaxel compared with body-surface area dosing in Chinese patients with advanced non-small cell lung cancer. Br J Clin Pharmacol. 2019; 85 ( 10 ): 2292 - 2301. doi: 10.1111/bcp.13982
dc.identifier.citedreferenceHopkins JJ, Sawyer MB. A review of body composition and pharmacokinetics in oncology. Expert Rev Clin Pharmacol. 2017; 10 ( 9 ): 947 - 956. doi: 10.1080/17512433.2017.1347503
dc.identifier.citedreferenceShachar SS, Deal AM, Weinberg M, et al. Skeletal muscle measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving taxane-based chemotherapy. Clin Cancer Res. 2017; 23 ( 3 ): 658 - 665. doi: 10.1158/078-0432.CCR-16-940
dc.identifier.citedreferenceAli R, Baracos VE, Sawyer MB, et al. Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens. Cancer Med. 2016; 5 ( 4 ): 607 - 616. doi: 10.1002/cam4.621
dc.identifier.citedreferencePrado CM, Lima IS, Baracos VE, et al. An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother Pharmacol. 2011; 67 ( 1 ): 93 - 101. doi: 10.1007/s00280-010-1288-y
dc.identifier.citedreferenceMir O, Coriat R, Blanchet B, et al. Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS ONE. 2012; 7 ( 5 ): e37563. doi: 10.1371/journal.pone.0037563
dc.identifier.citedreferenceMassicotte MH, Borget I, Broutin S, et al. Body composition variation and impact of low skeletal muscle mass in patients with advanced medullary thyroid carcinoma treated with vandetanib: results from a placebo-controlled study. J Clin Endocrinol Metab. 2013; 98 ( 6 ): 2401 - 2408. doi: 10.1210/jc.2013-1115
dc.identifier.citedreferenceWong AL, Seng KY, Ong EM, et al. Body fat composition impacts the hematologic toxicities and pharmacokinetics of doxorubicin in Asian breast cancer patients. Breast Cancer Res Treat. 2014; 144 ( 1 ): 143 - 152. doi: 10.1007/s10549-014-2843-8
dc.identifier.citedreferencevan Doorn L, Crombag MBS, Rier HN, et al. The influence of body composition on the systemic exposure of paclitaxel in esophageal cancer patients. Pharmaceuticals (Basel). 2021; 14 ( 1 ): 47. doi: 10.3390/ph14010047
dc.identifier.citedreferenceDerstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang SC. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep. 2018; 8 ( 1 ): 11369. doi: 10.1038/s41598-018-29825-5
dc.identifier.citedreferenceKrishnamurthy V, Zhang P, Ethiraj S, et al. Use of analytic morphomics of liver, spleen, and body composition to identify patients at risk for cirrhosis. Clin Gastroenterol Hepatol. 2015; 13 ( 2 ): 360 - 368.e5. doi: 10.1016/j.cgh.2014.07.042
dc.identifier.citedreferenceKraff S, Lindauer A, Joerger M, Salamone SJ, Jaehde U. Excel-based tool for pharmacokinetically guided dose adjustment of paclitaxel. Ther Drug Monit. 2015; 37 ( 6 ): 725 - 732. doi: 10.1097/ftd.0000000000000206
dc.identifier.citedreferenceBurnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res. 2004; 33 ( 2 ): 261 - 304. doi: 10.1177/0049124104268644
dc.identifier.citedreferencePrado CM, Baracos VE, McCargar LJ, et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res. 2007; 13 ( 11 ): 3264 - 3268. doi: 10.1158/1078-0432.CCR-06-3067
dc.identifier.citedreferenceCespedes Feliciano EM, Lee VS, Prado CM, et al. Muscle mass at the time of diagnosis of nonmetastatic colon cancer and early discontinuation of chemotherapy, delays, and dose reductions on adjuvant FOLFOX: The C-SCANS study. Cancer. 2017; 123 ( 24 ): 4868 - 4877. doi: 10.1002/cncr.30950
dc.identifier.citedreferenceCespedes Feliciano EM, Chen WY, Lee V, et al. Body composition, adherence to anthracycline and taxane-based chemotherapy, and survival after nonmetastatic breast cancer. JAMA Oncol. 2020; 6 ( 2 ): 264 - 270. doi: 10.1001/jamaoncol.2019.4668
dc.identifier.citedreferenceChemama S, Bayar MA, Lanoy E, et al. Sarcopenia is associated with chemotherapy toxicity in patients undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal cancer. Ann Surg Oncol. 2016; 23 ( 12 ): 3891 - 3898. doi: 10.1245/s10434-016-5360-7
dc.identifier.citedreferenceTrobec K, Kerec Kos M, von Haehling S, Springer J, Anker SD, Lainscak M. Pharmacokinetics of drugs in cachectic patients: a systematic review. PLoS ONE. 2013; 8 ( 11 ): e79603. doi: 10.1371/journal.pone.0079603
dc.identifier.citedreferenceKumar GN, Walle UK, Bhalla KN, Walle T. Binding of taxol to human plasma, albumin and alpha 1-acid glycoprotein. Res Commun Chem Pathol Pharmacol. 1993; 80 ( 3 ): 337 - 344.
dc.identifier.citedreferenceDesmedt C, Fornili M, Clatot F, et al. Differential benefit of adjuvant docetaxel-based chemotherapy in patients with early breast cancer according to baseline body mass index. J Clin Oncol. 2020; 38 ( 25 ): 2883 - 2891. doi: 10.1200/JCO.19.01771
dc.identifier.citedreferenceBeumer JH, Chu E, Allegra C, et al. Therapeutic drug monitoring in oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology recommendations for 5-fluorouracil therapy. Clin Pharmacol Ther. 2019; 105 ( 3 ): 598 - 613. doi: 10.1002/cpt.124
dc.identifier.citedreferenceSalgado TM, Quinn CS, Krumbach EK, et al. Reporting of paclitaxel-induced peripheral neuropathy symptoms to clinicians among women with breast cancer: a qualitative study. Support Care Cancer. 2020; 28 ( 9 ): 4163 - 4172. doi: 10.1007/s00520-019-5254-6
dc.identifier.citedreferenceBandos H, Melnikow J, Rivera DR, et al. Long-term peripheral neuropathy in breast cancer patients treated with adjuvant chemotherapy: NRG Oncology/NSABP B-30. J Natl Cancer Inst. 2018; 110 ( 2 ): djx162. doi: 10.1093/jnci/djx162
dc.identifier.citedreferenceShimozuma K, Ohashi Y, Takeuchi A, et al. Taxane-induced peripheral neuropathy and health-related quality of life in postoperative breast cancer patients undergoing adjuvant chemotherapy: N-SAS BC 02, a randomized clinical trial. Support Care Cancer. 2012; 20 ( 12 ): 3355 - 3364. doi: 10.1007/s00520-012-1492-x
dc.identifier.citedreferenceHertz DL, Childs DS, Park SB, et al. Patient-centric decision framework for treatment alterations in patients with chemotherapy-induced peripheral neuropathy (CIPN). Cancer Treat Rev. 2021; 99: 102241. doi: 10.1016/j.ctrv.2021.102241
dc.identifier.citedreferenceLoibl S, Skacel T, Nekljudova V, et al. Evaluating the impact of relative total dose intensity (RTDI) on patients’ short and long-term outcome in taxane- and anthracycline-based chemotherapy of metastatic breast cancer—a pooled analysis. BMC Cancer. 2011; 11 ( 1 ): 131. doi: 10.1186/1471-2407-11-131
dc.identifier.citedreferenceDerstine BA, Holcombe SA, Goulson RL, et al. Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J Nutr Health Aging. 2017; 21 ( 10 ): 180 - 185. doi: 10.1007/s12603-017-0983-3
dc.identifier.citedreferenceGriggs JJ, Bohlke K, Balaban EP, et al. Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO Guideline update. J Clin Oncol. 2021; 39 ( 18 ): 2037 - 2048. doi: 10.1200/JCO.21.00471
dc.identifier.citedreferenceBudd GT, Barlow WE, Moore HC, et al. SWOG S0221: a phase III trial comparing chemotherapy schedules in high-risk early-stage breast cancer. J Clin Oncol. 2015; 33 ( 1 ): 58 - 64. doi: 10.1200/jco.2014.56.3296
dc.identifier.citedreferenceSeidman AD, Berry D, Cirrincione C, et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B Protocol 9840. J Clin Oncol. 2008; 26 ( 10 ): 1642 - 1649. doi: 10.1200/JCO.2007.11.6699
dc.identifier.citedreferenceRowinsky EK, Chaudhry V, Cornblath DR, Donehower RC. Neurotoxicity of taxol. J National Cancer Inst Monogr. 1993; 15 ( 15 ): 107 - 115.
dc.identifier.citedreferenceLoprinzi CL, Lacchetti C, Bleeker J, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO Guideline update. J Clin Oncol. 2020; 14 ( 10 ): 01399. doi: 10.1200/JCO.20.01399
dc.identifier.citedreferenceSpeck RM, Sammel MD, Farrar JT, et al. Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer. J Oncol Pract. 2013; 9 ( 5 ): e234 - e240. doi: 10.1200/jop.2012.000863
dc.identifier.citedreferenceChan A, Hertz DL, Morales M, et al. Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer. 2019; 27 ( 10 ): 3729 - 3737. doi: 10.1007/s00520-019-04987-8
dc.identifier.citedreferenceKrens SD, McLeod HL, Hertz DL. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics. 2013; 14 ( 5 ): 555 - 574. doi: 10.2217/pgs.13.33
dc.identifier.citedreferenceHertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol. 2021; 6 ( 2 ): 1 - 13. doi: 10.1080/17425255.2021.1856367
dc.identifier.citedreferenceHertz DL, Kidwell KM, Vangipuram K, et al. Paclitaxel plasma concentration after the first infusion predicts treatment-limiting peripheral neuropathy. Clin Cancer Res. 2018; 24 ( 15 ): 3602 - 3610. doi: 10.1158/1078-0432.ccr-18-0656
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.