Show simple item record

Hydrothermal synthesis of chiral carbon dots

dc.contributor.authorVisheratina, Anastasia
dc.contributor.authorHesami, Leila
dc.contributor.authorWilson, Ashleigh K.
dc.contributor.authorBaalbaki, Nicole
dc.contributor.authorNoginova, Natalia
dc.contributor.authorNoginov, Mikhail A.
dc.contributor.authorKotov, Nicholas A.
dc.date.accessioned2022-12-05T16:39:53Z
dc.date.available2024-01-05 11:39:49en
dc.date.available2022-12-05T16:39:53Z
dc.date.issued2022-12
dc.identifier.citationVisheratina, Anastasia; Hesami, Leila; Wilson, Ashleigh K.; Baalbaki, Nicole; Noginova, Natalia; Noginov, Mikhail A.; Kotov, Nicholas A. (2022). "Hydrothermal synthesis of chiral carbon dots." Chirality 34(12): 1503-1514.
dc.identifier.issn0899-0042
dc.identifier.issn1520-636X
dc.identifier.urihttps://hdl.handle.net/2027.42/175203
dc.description.abstractNanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence of L- and D-CDots obtained by hydrothermal carbonization of L- and D-cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon-based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherfluorescent carbon dots
dc.subject.othercarbon-based nanomaterials
dc.subject.othernanoscale chirality
dc.subject.otheroptical activity
dc.subject.otherhydrothermal synthesis
dc.titleHydrothermal synthesis of chiral carbon dots
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175203/1/chir23509.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175203/2/chir23509_am.pdf
dc.identifier.doi10.1002/chir.23509
dc.identifier.sourceChirality
dc.identifier.citedreferenceLiu X, Lu J, Chen J, et al. Chiral self-assembly of porphyrins induced by chiral carbon dots. Front Chem. 2020; 8: 670.
dc.identifier.citedreferencePurcell-Milton F, Visheratina AK, Kuznetsova VA, Ryan A, Orlova AO, Gun’ko YK. Impact of shell thickness on photoluminescence and optical activity in chiral CdSe/CdS core/shell quantum dots. ACS Nano. 2017; 11 ( 9 ): 9207 - 9214. doi: 10.1021/acsnano.7b04199
dc.identifier.citedreferenceLi X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be 2+ detection. Sci Rep. 2015; 4 ( 1 ): 4976. doi: 10.1038/srep04976
dc.identifier.citedreferenceRagazzon G, Cadranel A, Ushakova EV, et al. Optical processes in carbon nanocolloids. Chem. 2021; 7 ( 3 ): 606 - 628. doi: 10.1016/j.chempr.2020.11.012
dc.identifier.citedreferenceSilverstein RM, Webster FX, Kiemle DJ. Spectrometric Identification of Organic Compounds. 7th ed. John Wiley & Sons, Inc.; 2005. doi: 10.1021/ed039p546
dc.identifier.citedreferenceVisheratina AK, Purcell-Milton F, Serrano-García R, et al. Chiral recognition of optically active CoFe 2 O 4 magnetic NPs by CdSe/CdS quantum dots stabilised with chiral ligands. J Mater Chem C Mater. 2017; 5 ( 7 ): 1692 - 1698.
dc.identifier.citedreferenceDas A, Kundelev EV, Vedernikova AA, et al. Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. Light Sci Appl. 2022; 11 ( 1 ): 92. doi: 10.1038/s41377-022-00778-9
dc.identifier.citedreferenceSharma A, Das J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol. 2019; 17 ( 1 ): 1 - 24.
dc.identifier.citedreferenceZhang M, Wang H, Wang B, et al. Maltase decorated by chiral carbon dots with inhibited enzyme activity for glucose level control. Small. 2019; 15 ( 48 ): 1901512.
dc.identifier.citedreferenceBartolomei B, Bogo A, Amato F, Ragazzon G, Prato M. Nuclear magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew Chem Int Ed. 2022; 61 ( 20 ): e202200038. doi: 10.1002/anie.202200038
dc.identifier.citedreferenceKainthola A, Bijalwan K, Negi S, Sharma H, Dwivedi C. Hydrothermal synthesis of highly stable boron nitride NPs. Mater Today Proc. 2020; 28: 138 - 140. doi: 10.1016/j.matpr.2020.01.452
dc.identifier.citedreferenceKong Y, He Y, Zhou J, Zhong S, Song G. Amino acids as the nitrogen source to synthesize boron nitride quantum dots for fluorescence turn-off-on detection of ascorbic acid. Chem Select. 2020; 5 ( 13 ): 3828 - 3834. doi: 10.1002/slct.202000602
dc.identifier.citedreferenceChoi Y, Kang B, Lee J, et al. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem Mater. 2016; 28 ( 19 ): 6840 - 6847.
dc.identifier.citedreferenceWang Z-X, Yu X-H, Li F, et al. Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), Cu(II) and pyrophosphate ions. Microchimica Acta. 2017; 184 ( 12 ): 4775 - 4783. doi: 10.1007/s00604-017-2526-3
dc.identifier.citedreferenceLiu Y, Li W, Wu P, et al. Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sens Actuators B. 2019; 281: 34 - 43. doi: 10.1016/j.snb.2018.10.075
dc.identifier.citedreferenceJahan S, Mansoor F, Naz S, Lei J, Kanwal S. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye. Anal Chem. 2013; 85 ( 21 ): 10232 - 10239.
dc.identifier.citedreferenceMa W, Xu L, de Moura AF, et al. Chiral inorganic nanostructures. Chem Rev. 2017; 117: 12. doi: 10.1021/acs.chemrev.6b00755
dc.identifier.citedreferenceVisheratina A, Kotov NA. Inorganic nanostructures with strong chiroptical activity. CCS Chem. 2020; 583 - 604.
dc.identifier.citedreferenceMa W, Xu L, Wang L, Xu C, Kuang H. Chirality-based biosensors. Adv Funct Mater. 2018; 1805512. doi: 10.1002/adfm.201805512
dc.identifier.citedreferenceGogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric recognition and separation by chiral NPs. Molecules. 2019; 24 ( 6 ): 1007. doi: 10.3390/molecules24061007
dc.identifier.citedreferenceKumar J, Thomas KG, Liz-Marzán LM. Nanoscale chirality in metal and semiconductor NPs. Chem Commun. 2016; 52 ( 85 ): 12555 - 12569. doi: 10.1039/C6CC05613J
dc.identifier.citedreferenceSanchez-Valencia JR, Dienel T, Gröning O, et al. Controlled synthesis of single-chirality carbon nanotubes. Nature. 2014; 512 ( 7512 ): 61 - 64.
dc.identifier.citedreferenceSuzuki N, Wang Y, Elvati P, et al. Chiral graphene quantum dots. ACS Nano. 2016; 10 ( 2 ): 1744 - 1755. doi: 10.1021/acsnano.5b06369
dc.identifier.citedreferenceZheng W-W, Hsieh Y-H, Chiu Y-C, Cai S-J, Cheng C-L, Chen C. Organic functionalization of ultradispersed nanodiamond: synthesis and applications. J Mater Chem. 2009; 19 ( 44 ): 8432 - 8441.
dc.identifier.citedreferenceBaker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010; 49 ( 38 ): 6726 - 6744.
dc.identifier.citedreferenceZheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015; 11 ( 14 ): 1620 - 1636.
dc.identifier.citedreferenceChahal S, Macairan J-R, Yousefi N, Tufenkji N, Naccache R. Green synthesis of carbon dots and their applications. RSC Adv. 2021; 11 ( 41 ): 25354 - 25363.
dc.identifier.citedreferenceEssner JB, Baker GA. The emerging roles of carbon dots in solar photovoltaics: a critical review. Environ Sci Nano. 2017; 4 ( 6 ): 1216 - 1263.
dc.identifier.citedreferenceTian Z, Zhang X, Li D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv Opt Mater. 2017; 5 ( 19 ): 1700416.
dc.identifier.citedreferenceHesari M, Ding Z. A perspective on application of carbon quantum dots in luminescence immunoassays. Front Chem. 2020; 8: 946.
dc.identifier.citedreferenceDöring A, Ushakova E, Rogach AL. Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci Appl. 2022; 11 ( 1 ): 75. doi: 10.1038/s41377-022-00764-1
dc.identifier.citedreferenceZhang M, Hu L, Wang H, et al. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale. 2018; 10 ( 26 ): 12734 - 12742.
dc.identifier.citedreferenceLi F, Li Y, Yang X, et al. Highly fluorescent chiral N-S-doped carbon dots from cysteine: affecting cellular energy metabolism. Angew Chem. 2018; 130 ( 9 ): 2401 - 2406.
dc.identifier.citedreferenceMalishev R, Arad E, Bhunia SK, et al. Chiral modulation of amyloid beta fibrillation and cytotoxicity by enantiomeric carbon dots. Chem Commun. 2018; 54 ( 56 ): 7762 - 7765.
dc.identifier.citedreferenceBourlinos AB, Trivizas G, Karakassides MA, et al. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon N Y. 2015; 83: 173 - 179.
dc.identifier.citedreferenceWei Y, Chen L, Wang J, Liu X, Yang Y, Yu S. Investigation on the chirality mechanism of chiral carbon quantum dots derived from tryptophan. RSC Adv. 2019; 9 ( 6 ): 3208 - 3214.
dc.identifier.citedreferenceÐorđević L, Arcudi F, D’Urso A, et al. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat Commun. 2018; 9 ( 1 ): 1 - 8.
dc.identifier.citedreferenceHu L, Sun Y, Zhou Y, et al. Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality. Inorg Chem Front. 2017; 4 ( 6 ): 946 - 953. doi: 10.1039/C7QI00118E
dc.identifier.citedreferencePei S, Zhang J, Gao M, Wu D, Yang Y, Liu R. A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. J Colloid Interface Sci. 2015; 439: 129 - 133.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.