Show simple item record

Oral biofilm dysbiosis during experimental periodontitis

dc.contributor.authorRibeiro, Apoena Aguiar
dc.contributor.authorJiao, Yizu
dc.contributor.authorGirnary, Mustafa
dc.contributor.authorAlves, Tomaz
dc.contributor.authorChen, Liang
dc.contributor.authorFarrell, Anna
dc.contributor.authorWu, Di
dc.contributor.authorTeles, Flavia
dc.contributor.authorInohara, Naohiro
dc.contributor.authorSwanson, Karen V.
dc.contributor.authorMarchesan, Julie T.
dc.date.accessioned2022-12-05T16:41:39Z
dc.date.available2024-01-05 11:41:37en
dc.date.available2022-12-05T16:41:39Z
dc.date.issued2022-12
dc.identifier.citationRibeiro, Apoena Aguiar; Jiao, Yizu; Girnary, Mustafa; Alves, Tomaz; Chen, Liang; Farrell, Anna; Wu, Di; Teles, Flavia; Inohara, Naohiro; Swanson, Karen V.; Marchesan, Julie T. (2022). "Oral biofilm dysbiosis during experimental periodontitis." Molecular Oral Microbiology 37(6): 256-265.
dc.identifier.issn2041-1006
dc.identifier.issn2041-1014
dc.identifier.urihttps://hdl.handle.net/2027.42/175239
dc.description.abstractObjectivesWe have previously characterized the main osteoimmunological events that occur during ligature periodontitis. This study aims to determine the polymicrobial community shifts that occur during disease development.MethodsPeriodontitis was induced in C57BL/6 mice using the ligature-induced periodontitis model. Healthy oral mucosa swabs and ligatures were collected every 3 days from 0 to 18 days post-ligature placement. Biofilm samples were evaluated by 16SrRNA gene sequencing (Illumina MiSeq) and QIIME. Time-course changes were determined by relative abundance, diversity, and rank analyses (PERMANOVA, Bonferroni-adjusted).ResultsMicrobial differences between health and periodontal inflammation were observed at all phylogenic levels. An evident microbial community shift occurred in 25 genera during the advancement of “gingivitis” (3–6 days) to periodontitis (9–18 days). From day 0 to 18, dramatic changes were identified in Streptococcus levels, with an overall decrease (54.04%–0.02%) as well an overall increase of Enterococcus and Lactobacillus (23.7%–73.1% and 10.1%–70.2%, respectively). Alpha-diversity decreased to its lowest at 3 days, followed by an increase in diversity as disease advancement. Beta-diversity increased after ligature placement, indicating that bone loss develops in response to a greater microbial variability (p = 0.001). Levels of facultative and strict anaerobic bacteria augmented over the course of disease progression, with a total of eight species significantly different during the 18-day period.ConclusionThe data supports that murine gingival inflammation and alveolar bone loss develop in response to microbiome shifts. Bacterial diversity increased during progression to bone loss. These findings further support the utilization of the periodontitis ligature model for microbial shift analysis under different experimental conditions.The shift in microbiome community during periodontitis development in a murine model. Gingival inflammation and bone loss in murine periodontitis develops in response to microbiome shifts, marked by a decrease in alpha diversity in the initial stages, followed by an increase in alpha and beta diversities as disease progresses.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiofilm
dc.subject.otherexperimental periodontitis
dc.subject.otherdysbiosis
dc.titleOral biofilm dysbiosis during experimental periodontitis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175239/1/omi12389-sup-0001-tableS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175239/2/omi12389.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175239/3/omi12389_am.pdf
dc.identifier.doi10.1111/omi.12389
dc.identifier.sourceMolecular Oral Microbiology
dc.identifier.citedreferencePaes Batista da Silva, A., Barros, S. P., Moss, K., Preisser, J., Marchesan, J. T., Ward, M., & Offenbacher, S. ( 2016 ). Microbial profiling in experimentally induced biofilm overgrowth among patients with various periodontal states. Journal of Periodontology, 87, 27 – 35.
dc.identifier.citedreferenceHasegawa, M., Osaka, T., Tawaratsumida, K., Yamazaki, T., Tada, H., Chen, G. Y., Tsuneda, S., Núñez, G., & Inohara, N. ( 2010 ). Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infection and Immunity, 78 ( 2 ), 639 – 650. https://doi.org/10.1128/IAI.01043-09
dc.identifier.citedreferenceHochberg, Y., & Benjamini, Y. ( 1990 ). More powerful procedures for multiple significance testing. Statistics in Medicine, 9 ( 7 ), 811 – 818. https://doi.org/10.1002/sim.4780090710
dc.identifier.citedreferenceJiao, Y., Hasegawa, M., & Inohara, N. ( 2014 ). The role of oral pathobionts in dysbiosis during periodontitis development. Journal of Dental Research, 93, 539 – 546.
dc.identifier.citedreferenceJiao, Y., Darzi, Y., Tawaratsumida, K., Marchesan, J. T., Hasegawa, M., Moon, H., Chen, G. Y., Núñez, G., Giannobile, W. V., Raes, J., & Inohara, N. ( 2013 ). Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host & Microbe, 13 ( 5 ), 595 – 601. https://doi.org/10.1016/j.chom.2013.04.005
dc.identifier.citedreferenceJones, R. B., Zhu, X., Moan, E., Murff, H. J., Ness, R. M., Seidner, D. L., Sun, S., Yu, C., Dai, Q., Fodor, A. A., Azcarate-Peril, M. A., & Shrubsole, M. J. ( 2018 ). Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Scientific Reports, 8 ( 1 ), 4139.
dc.identifier.citedreferenceKitamoto, S., Nagao-Kitamoto, H., Jiao, Y., Gillilland, M. G., 3rd, Hayashi, A., Imai, J., Sugihara, K., Miyoshi, M., Brazil, J. C., Kuffa, P., Hill, B. D., Rizvi, S. M., Wen, F., Bishu, S., Inohara, N., Eaton, K. A., Nusrat, A., Lei, Y. L., Giannobile, W. V., & Kamada, N. ( 2020 ). The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell, 182 ( 2 ), 447.e14 – 462.e14.
dc.identifier.citedreferenceMahendran, S., Vijayabaskar, P., Saravanan, S., Anandapandian, K. T. K., & Shank, T. ( 2013 ). Structural characterization and biological activity of exopolysaccharide from Lysinibacillus fusiformis. African Journal of Microbiology Research, 7, 4629 – 4639.
dc.identifier.citedreferenceMarchesan, J., Girnary, M. S., Jing, L., Miao, M. Z., Zhang, S., Sun, L., Morelli, T., Schoenfisch, M. H., Inohara, N., Offenbacher, S., & Jiao, Y. ( 2018 ). An experimental murine model to study periodontitis. Nature Protocols, 13 ( 10 ), 2247 – 2267.
dc.identifier.citedreferenceMarchesan, J., Jiao, Y., Schaff, R. A., Hao, J., Morelli, T., Kinney, J. S., Gerow, E., Sheridan, R., Rodrigues, V., Paster, B. J., Inohara, N., & Giannobile, W. V. ( 2016 ). TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens. Molecular Oral Microbiology, 31, 243 – 258.
dc.identifier.citedreferenceMarchesan, J. T., Morelli, T., Lundy, S. K., Jiao, Y., Lim, S., Inohara, N., Nunez, G., Fox, D. A., & Giannobile, W. V. ( 2012 ). Divergence of the systemic immune response following oral infection with distinct strains of Porphyromonas gingivalis. Molecular Oral Microbiology, 27 ( 6 ), 483 – 495.
dc.identifier.citedreferenceMarchesan, J. T., Gerow, E. A., Schaff, R., Taut, A. D., Shin, S. Y., Sugai, J., Brand, D., Burberry, A., Jorns, J., Lundy, S. K., Nuñez, G., Fox, D. A., & Giannobile, W. V. ( 2013 ). Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Research & Therapy, 15 ( 6 ), R186.
dc.identifier.citedreferenceNiazi, S. A., Clarke, D., Do, T., Gilbert, S. C., Mannocci, F., & Beighton, D. ( 2010 ). Propionibacterium acnes and Staphylococcus epidermidis isolated from refractory endodontic lesions are opportunistic pathogens. Journal of Clinical Microbiology, 48 ( 11 ), 3859 – 3869.
dc.identifier.citedreferenceNociti, F. H., Jr., Casati, M. Z., & Duarte, P. M. ( 2015 ). Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontology 2000, 67, 187 – 210.
dc.identifier.citedreferenceOkuda, K., Kato, T., Shiozu, J., Takazoe, I., & Nakamura, T. ( 1985 ). Bacteroides heparinolyticus sp. nov. isolated from humans with periodontitis. International Journal of Systematic Bacteriology, 35, 438 – 442.
dc.identifier.citedreferencePalmer, R. J., Jr., Shah, N., Valm, A., Paster, B., Dewhirst, F., Inui, T., & Cisar, J. O. ( 2017 ). Interbacterial adhesion networks within early oral biofilms of single human hosts. Applied and Environmental Microbiology, 83 ( 11 ), e00407 – 17.
dc.identifier.citedreferencePaster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A., & Dewhirst, F. E. ( 2001 ). Bacterial diversity in human subgingival plaque. Journal of Bacteriology, 183, 3770 – 3783.
dc.identifier.citedreferenceSanz, M., Ceriello, A., Buysschaert, M., Chapple, I., Demmer, R. T., Graziani, F., Herrera, D., Jepsen, S., Lione, L., Madianos, P., Mathur, M., Montanya, E., Shapira, L., Tonetti, M., & Vegh, D. ( 2018 ). Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Journal of Clinical Periodontology, 45, 138 – 149.
dc.identifier.citedreferenceSato, K., Yamazaki, K., Kato, T., Nakanishi, Y., Tsuzuno, T., Yokoji-Takeuchi, M., Yamada-Hara, M., Miura, N., Okuda, S., Ohno, H., & Yamazaki, K. ( 2021 ). Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid. mBio, 12 ( 3 ), e0077121.
dc.identifier.citedreferenceSato, K., Takahashi, N., Kato, T., Matsuda, Y., Yokoji, M., Yamada, M., Nakajima, T., Kondo, N., Endo, N., Yamamoto, R., Noiri, Y., Ohno, H., & Yamazaki, K. ( 2017 ). Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Science Reports, 7, 6955.
dc.identifier.citedreferenceSocransky, S. S., Manganiello, A. D., Propas, D., Oram, V., & van Houte, J. ( 1977 ). Bacteriological studies of developing supragingival dental plaque. Journal of Periodontal Research, 12 ( 2 ), 90 – 106.
dc.identifier.citedreferenceSouto, R., & Colombo, A. P. ( 2008 ). Prevalence of Enterococcus faecalis in subgingival biofilm and saliva of subjects with chronic periodontal infection. Archives of Oral Biology, 53 ( 2 ), 155 – 160. https://doi.org/10.1016/j.archoralbio.2007.08.004
dc.identifier.citedreferenceSouto, R., Silva-Boghossian, C. M., & Colombo, A. P. ( 2014 ). Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection. Brazilian Journal of Microbiology, 45 ( 2 ), 495 – 501.
dc.identifier.citedreferenceSwanson, K. V., Girnary, M., Alves, T., Ting, J. P., Divaris, K., Beck, J., Pucinelli, C. M., da Silva, R. A. B., Uyan, D., Wilson, J. E., Seaman, W. T., Webster-Cyriaque, J., Vias, N., Jiao, Y., Cantley, L., Marlier, A., Arnold, R. R., & Marchesan, J. T. ( 2022 ). Interferon activated gene 204 ( I fi204) protects against bone loss in experimental periodontitis. Journal of Periodontology, 93 ( 9 ), 1366 – 1377.
dc.identifier.citedreferenceSzafranski, S. P., Wos-Oxley, M. L., Vilchez-Vargas, R., Jáuregui, R., Plumeier, I., Klawonn, F., Tomasch, J., Meisinger, C., Kühnisch, J., Sztajer, H., Pieper, D. H., & Wagner-Döbler, I. ( 2015 ). High-resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis. Applied and Environmental Microbiology, 81 ( 3 ), 1047 – 1058.
dc.identifier.citedreferenceTeles, F. R., Teles, R. P., Uzel, N. G., Song, X. Q., Torresyap, G., Socransky, S. S., & Haffajee, A. D. ( 2012 ). Early microbial succession in redeveloping dental biofilms in periodontal health and disease. Journal of Periodontal Research, 47 ( 1 ), 95 – 104.
dc.identifier.citedreferenceTeles, F., Wang, Y., Hajishengallis, G., Hasturk, H., & Marchesan, J. T. ( 2021 ). Impact of systemic factors in shaping the periodontal microbiome. Periodontology 2000, 85 ( 1 ), 126 – 160.
dc.identifier.citedreferenceThompson, A. L., Monteagudo-Mera, A., Cadenas, M. B., Lampl, M. L., & Azcarate-Peril, M. A. ( 2015 ). Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Frontiers in Cellular and Infection Microbiology, 5, 5.
dc.identifier.citedreferenceVieira Colombo, A. P., Magalhães, C. B., Hartenbach, F. A., Martins do Souto, R., & Maciel da Silva-Boghossian, C. ( 2016 ). Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microbial Pathogenesis, 94, 27 – 34.
dc.identifier.citedreferenceAbe, T., & Hajishengallis, G. ( 2013 ). Optimization of the ligature-induced periodontitis model in mice. Journal of Immunological Methods, 394, 49 – 54.
dc.identifier.citedreferenceBenabdelkader, S., Boxberger, M., Lo, C. I., Aboudharam, G., La Scola, B., & Fenollar, F. ( 2019 ). Corynebacterium dentalis sp. nov., a new bacterium isolated from dental plaque of a woman with periodontitis. New Microbes and New Infections, 33, 100625.
dc.identifier.citedreferenceBenjamini, Y., & Hochberg, Y. ( 1995 ). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289 – 300.
dc.identifier.citedreferenceCaporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. ( 2010 ). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 ( 5 ), 335 – 336. https://doi.org/10.1038/nmeth.f.303
dc.identifier.citedreferenceChun, J., Kim, K. Y., Lee, J. H., & Choi, Y. ( 2010 ). The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiology, 10, 101.
dc.identifier.citedreferenceColombo, A. P., Haffajee, A. D., Dewhirst, F. E., Paster, B. J., Smith, C. M., Cugini, M. A., & Socransky, S. S. ( 1998 ). Clinical and microbiological features of refractory periodontitis subjects. Journal of Clinical Periodontology, 25, 169 – 180.
dc.identifier.citedreferenceColombo, A. P., Teles, R. P., Torres, M. C., Souto, R., Rosalem, W. J., Mendes, M. C., & Uzeda, M. ( 2002 ). Subgingival microbiota of Brazilian subjects with untreated chronic periodontitis. Journal of Periodontology, 73, 360 – 369.
dc.identifier.citedreferenceDemmer, R. T., Breskin, A., Rosenbaum, M., Zuk, A., LeDuc, C., Leibel, R., Paster, B., Desvarieux, M., Jacobs, D. R., Jr., & Papapanou, P. N. ( 2017 ). The subgingival microbiome, systemic inflammation and insulin resistance: The oral infections, glucose intolerance and insulin resistance study. Journal of Clinical Periodontology, 44 ( 3 ), 255 – 265.
dc.identifier.citedreferenceDeng, K., Ouyang, X. Y., Chu, Y., & Zhang, Q. ( 2017 ). Subgingival microbiome of gingivitis in Chinese undergraduates. The Chinese Journal of Dental Research, 20 ( 3 ), 145 – 152.
dc.identifier.citedreferenceEdwards, U., Rogall, T., Blocker, H., Emde, M., & Bottger, E. C. ( 1989 ). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17 ( 19 ), 7843 – 7853.
dc.identifier.citedreferenceGraves, D. T., Fine, D., Teng, Y.-T. A., Van Dyke, T. E., & Hajishengallis, G. ( 2008 ). The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. Journal of Clinical Periodontology, 35, 89 – 105.
dc.identifier.citedreferenceGrice, E. A., Snitkin, E. S., Yockey, L. J., Bermudez, D. M., N. Comparative Sequencing Program. Liechty, K. W., & Segre, J. A. ( 2010 ). Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 33 ), 14799 – 14804. https://doi.org/10.1073/pnas.1004204107
dc.identifier.citedreferenceGriffen, A. L., Beall, C. J., Campbell, J. H., Firestone, N. D., Kumar, P. S., Yang, Z. K., Podar, M., & Leys, E. J. ( 2012 ). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal, 6, 1176 – 1185.
dc.identifier.citedreferenceHajishengallis, G., Lamont, R. J., & Graves, D. T. ( 2015 ). The enduring importance of animal models in understanding periodontal disease. Virulence, 6, 229 – 235.
dc.identifier.citedreferenceHajishengallis, G., & Lamont, R. J. ( 2016 ). Dancing with the stars: How choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends in Microbiology, 24, 477 – 489.
dc.identifier.citedreferenceHasegawa, M., Yang, K., Hashimoto, M., Park, J. H., Kim, Y. G., Fujimoto, Y., Nuñez, G., Fukase, K., & Inohara, N. ( 2006 ). Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. Journal of Biological Chemistry, 281 ( 39 ), 29054 – 29063. https://doi.org/10.1074/jbc.M602638200
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.