Show simple item record

Nonvolatile Electrochemical Random-Access Memory under Short Circuit

dc.contributor.authorKim, Diana S.
dc.contributor.authorWatkins, Virgil J.
dc.contributor.authorCline, Laszlo A.
dc.contributor.authorLi, Jingxian
dc.contributor.authorSun, Kai
dc.contributor.authorSugar, Joshua D.
dc.contributor.authorFuller, Elliot J.
dc.contributor.authorTalin, A. Alec
dc.contributor.authorLi, Yiyang
dc.date.accessioned2023-02-01T18:59:31Z
dc.date.available2024-02-01 13:59:29en
dc.date.available2023-02-01T18:59:31Z
dc.date.issued2023-01
dc.identifier.citationKim, Diana S.; Watkins, Virgil J.; Cline, Laszlo A.; Li, Jingxian; Sun, Kai; Sugar, Joshua D.; Fuller, Elliot J.; Talin, A. Alec; Li, Yiyang (2023). "Nonvolatile Electrochemical Random-Access Memory under Short Circuit." Advanced Electronic Materials 9(1): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/175792
dc.description.abstractElectrochemical random-access memory (ECRAM) is a recently developed and highly promising analog resistive memory element for in-memory computing. One longstanding challenge of ECRAM is attaining retention time beyond a few hours. This short retention has precluded ECRAM from being considered for inference classification in deep neural networks, which is likely the largest opportunity for in-memory computing. In this work, an ECRAM cell with orders of magnitude longer retention than previously achieved is developed, and which is anticipated to exceed ten years at 85 °C. This study hypothesizes that the origin of this exceptional retention is phase separation, which enables the formation of multiple effectively equilibrium resistance states. This work highlights the promises and opportunities to use phase separation to yield ECRAM cells with exceptionally long, and potentially permanent, retention times.An electrochemical memory synaptic transistor that has potentially permanent information retention time is developed. This retention time arises for phase separation, which enables multiple states to simultaneously exist in equilibrium.
dc.publisherWiley Periodicals, Inc.
dc.publisherIEEE
dc.subject.otherin-memory computing
dc.subject.othertungsten oxide
dc.subject.otherretention
dc.subject.otheroxygen vacancies
dc.titleNonvolatile Electrochemical Random-Access Memory under Short Circuit
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175792/1/aelm202200958-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175792/2/aelm202200958.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175792/3/aelm202200958_am.pdf
dc.identifier.doi10.1002/aelm.202200958
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceS. M. Haile, Acta Mater. 2003, 51, 5981.
dc.identifier.citedreferenceE. J. Fuller, Y. Li, C. Bennet, S. T. Keene, A. Melianas, S. Agarwal, M. J. Marinella, A. Salleo, A. A. Talin, IBM J. Res. Dev. 2019, 63, 9:1.
dc.identifier.citedreferenceS. T. Keene, A. Melianas, Y. van de Burgt, A. Salleo, Adv. Electron. Mater. 2019, 5, 1800686.
dc.identifier.citedreferenceM. T. Sharbati, Y. Du, J. Torres, N. D. Ardolino, M. Yun, F. Xiong, Adv. Mater. 2018, 30, 1802353.
dc.identifier.citedreferenceD. Kireev, S. Liu, H. Jin, T. P. Xiao, C. H. Bennett, D. Akinwande, J. A. C. Incorvia, Nat. Commun. 2022, 13, 4386.
dc.identifier.citedreferenceY. Tuchman, T. J. Quill, G. LeCroy, A. Salleo, Adv. Electron. Mater. 2021, 8, 2100426.
dc.identifier.citedreferenceQ. Wan, M. Rasetto, M. T. Sharbati, J. R. Erickson, S. R. Velagala, M. T. Reilly, Y. Li, R. Benosman, F. Xiong, Adv. Intell. Syst. 2021, 3, 2100021.
dc.identifier.citedreferenceM. Baldo, D. Ielmini, in 2021 IEEE International Memory Workshop (IMW), IEEE, Dresden, Germany 2021, https://doi.org/10.1109/IMW51353.2021.9439608.
dc.identifier.citedreferenceY. Jeong, H. Lee, D. G. Ryu, S. H. Cho, G. Lee, S. Kim, S. Kim, Y. S. Lee, Adv. Electron. Mater. 2021, 7, 2100185.
dc.identifier.citedreferenceS. Kazemzadeh, L. Dodsworth, I. F. Pereira, Y. van de Burgt, Adv. Electron. Mater. 2022, https://doi.org/10.1002/aelm.202200427.
dc.identifier.citedreferenceA. A. Talin, Y. Li, D. A. Robinson, E. J. Fuller, S. Kumar, Adv. Mater. https://doi.org/10.1002/adma202204771.
dc.identifier.citedreferenceM. Onen, N. Emond, J. Li, B. Yildiz, J. A. del Alamo, Nano Lett. 2021, 21, 6111.
dc.identifier.citedreferenceA. Melianas, T. J. Quill, G. LeCroy, Y. Tuchman, H. v. Loo, S. T. Keene, A. Giovannitti, H. R. Lee, I. P. Maria, I. McCulloch, A. Salleo, Sci. Adv. 2020, 6, eabb2958.
dc.identifier.citedreferenceY. Li, J. Lu, D. Shang, Q. Liu, S. Wu, Z. Wu, X. Zhang, J. Yang, Z. Wang, H. Lv, M. Liu, Adv. Mater. 2020, 32, 2003018.
dc.identifier.citedreferenceT. Gokmen, Y. Vlasov, Front. Neurosci. 2016, 10, 333.
dc.identifier.citedreferenceG. A. Niklasson, C. G. Granqvist, J. Mater. Chem. 2007, 17, 127.
dc.identifier.citedreferenceS. T. Keene, A. Melianas, E. J. Fuller, Y. van de Burgt, A. A. Talin, A. Salleo, J. Phys. D: Appl. Phys. 2018, 51, 224002.
dc.identifier.citedreferenceB. Traoré, P. Blaise, E. Vianello, H. Grampeix, S. Jeannot, L. Perniola, B. De Salvo, Y. Nishi, IEEE Trans. Electron Devices 2015, 62, 4029.
dc.identifier.citedreferenceY. Y. Chen, R. Degraeve, S. Clima, B. Govoreanu, L. Goux, A. Fantini, G. S. Kar, G. Pourtois, G. Groeseneken, D. J. Wouters, M. Jurczak, in 2012 Int. Electron Devices Meeting, IEEE, San Francisco, USA 2012, pp. 20.3.1 – 20.3.4.
dc.identifier.citedreferenceZ. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, presented at 2012 4th IEEE International Memory Workshop, IEEE, Milan, Italy 2012.
dc.identifier.citedreferenceY. Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G. S. Kar, A. Fantini, G. Groeseneken, D. J. Wouters, M. Jurczak, IEEE Trans. Electron Devices 2013, 60, 1114.
dc.identifier.citedreferenceC. M. Proctor, J. Rivnay, G. G. Malliaras, J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1433.
dc.identifier.citedreferenceM. Z. Bazant, Acc. Chem. Res. 2013, 46, 1144.
dc.identifier.citedreferenceH. Tian, M. Z. Bazant, Nano Lett. 2022, 22, 5866.
dc.identifier.citedreferenceY. Li, W. C. Chueh, Annu. Rev. Mater. Res. 2018, 48, 137.
dc.identifier.citedreferenceY. Li, H. Chen, K. Lim, H. D. Deng, J. Lim, D. Fraggedakis, P. M. Attia, S. C. Lee, N. Jin, J. Moškon, Z. Guan, W. E. Gent, J. Hong, Y.-S. Yu, M. Gaberšček, M. S. Islam, M. Z. Bazant, W. C. Chueh, Nat. Mater. 2018, 17, 915.
dc.identifier.citedreferenceJ. Lim, Y. Li, D. H. Alsem, H. So, S. C. Lee, P. Bai, D. A. Cogswell, X. Liu, N. Jin, Y. Yu, N. J. Salmon, D. A. Shapiro, M. Z. Bazant, T. Tyliszczak, W. C. Chueh, Science 2016, 353, 566.
dc.identifier.citedreferenceC. S. Pedersen, J. H. Chang, Y. Li, N. Pryds, J. M. Garcia Lastra, APL Mater. 2020, 8, 071108.
dc.identifier.citedreferenceJ. W. Cahn, J. E. Hilliard, J. Chem. Phys. 1958, 28, 258.
dc.identifier.citedreferenceB. König, O. J. J. Ronsin, J. Harting, Phys. Chem. Chem. Phys. 2021, 23, 24823.
dc.identifier.citedreferenceQ. Lu, B. Yildiz, Nano Lett. 2016, 16, 1186.
dc.identifier.citedreferenceA. Mehonic, A. J. Kenyon, Nature 2022, 604, 255.
dc.identifier.citedreferenceD. Ielmini, H.-S. P. Wong, Nat. Electron. 2018, 1, 333.
dc.identifier.citedreferenceQ. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
dc.identifier.citedreferenceW. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong, G. Cauwenberghs, Nature 2022, 608, 504.
dc.identifier.citedreferenceM. J. Marinella, S. Agarwal, A. Hsia, I. Richter, R. Jacobs-Gedrim, J. Niroula, S. J. Plimpton, E. Ipek, C. D. James, IEEE J. Emerging Sel. Top. Circuits Syst. 2018, 8, 86.
dc.identifier.citedreferenceJ. Hasler, Proc. IEEE 2020, 108, 1283.
dc.identifier.citedreferenceS. Ambrogio, P. Narayanan, H. Tsai, C. Mackin, K. Spoon, A. Chen, A. Fasoli, A. Friz, G. W. Burr, in 2020 Int. Symp. VLSI Technology, Systems and Applications (VLSI-TSA), IEEE, Genova, Italy 2020, pp. 119 – 120.
dc.identifier.citedreferenceS. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60.
dc.identifier.citedreferenceC. Mackin, M. J. Rasch, A. Chen, J. Timcheck, R. L. Bruce, N. Li, P. Narayanan, S. Ambrogio, M. Le Gallo, S. R. Nandakumar, A. Fasoli, J. Luquin, A. Friz, A. Sebastian, H. Tsai, G. W. Burr, Nat. Commun. 2022, 13, 3765.
dc.identifier.citedreferenceA. I. Khan, A. Keshavarzi, S. Datta, Nat. Electron. 2020, 3, 588.
dc.identifier.citedreferenceP. Wang, S. Yu, MRS Commun. 2020, 10, 538.
dc.identifier.citedreferenceZ. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia, J. J. Yang, Nat. Rev. Mater. 2020, 5, 173.
dc.identifier.citedreferenceP. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, H. Qian, Nature 2020, 577, 641.
dc.identifier.citedreferenceM. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, J. P. Strachan, Adv. Mater. 2018, 30, 1705914.
dc.identifier.citedreferenceT. Stecconi, R. Guido, L. Berchialla, A. La Porta, J. Weiss, Y. Popoff, M. Halter, M. Sousa, F. Horst, D. Dávila, U. Drechsler, R. Dittmann, B. J. Offrein, V. Bragaglia, Adv. Electron. Mater. 2022, 8, 2200448.
dc.identifier.citedreferenceR. Dittmann, S. Menzel, R. Waser, Adv. Phys. 2022, 70, 155.
dc.identifier.citedreferenceR. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
dc.identifier.citedreferenceS. Liu, T. P. Xiao, C. Cui, J. A. C. Incorvia, C. H. Bennett, M. J. Marinella, Appl. Phys. Lett. 2021, 118, 202405.
dc.identifier.citedreferenceJ. Shi, S. D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun. 2013, 4, 2676.
dc.identifier.citedreferenceJ. D. Greenlee, C. F. Petersburg, W. G. Daly, F. M. Alamgir, W. Alan Doolittle, Appl. Phys. Lett. 2013, 102, 213502.
dc.identifier.citedreferenceE. J. Fuller, F. E. Gabaly, F. Léonard, S. Agarwal, S. J. Plimpton, R. B. Jacobs-Gedrim, C. D. James, M. J. Marinella, A. A. Talin, Adv. Mater. 2017, 29, 1604310.
dc.identifier.citedreferenceY. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. A. Talin, A. Salleo, Nat. Mater. 2017, 16, 414.
dc.identifier.citedreferenceE. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 2019, 364, 570.
dc.identifier.citedreferenceJ. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin, K.-T. Lee, P. Solomon, K. Chan, W. Haensch, J. Rozen, in 2018 IEEE Int. Electron Devices Meeting (IEDM), IEEE, San Francisco, USA 2018, pp. 13.1.1 – 13.1.4.
dc.identifier.citedreferenceY. Li, E. J. Fuller, J. D. Sugar, S. Yoo, D. S. Ashby, C. H. Bennett, R. D. Horton, M. S. Bartsch, M. J. Marinella, W. D. Lu, A. A. Talin, Adv. Mater. 2020, 32, 2003984.
dc.identifier.citedreferenceY. Li, E. J. Fuller, S. Asapu, S. Agarwal, T. Kurita, J. J. Yang, A. A. Talin, ACS Appl. Mater. Interfaces 2019, 11, 38982.
dc.identifier.citedreferenceS. Kim, T. Todorov, M. Onen, T. Gokmen, D. Bishop, P. Solomon, K.-T. Lee, M. Copel, D. B. Farmer, J. A. Ott, T. Ando, H. Miyazoe, V. Narayanan, J. Rozen, in 2019 IEEE Int. Electron Devices Meeting (IEDM), IEEE, San Francisco, USA 2019, pp. 35.7.1 – 35.7.4.
dc.identifier.citedreferenceM. Onen, N. Emond, B. Wang, D. Zhang, F. M. Ross, J. Li, B. Yildiz, J. A. Del Alamo, Science 2022, 377, 539.
dc.identifier.citedreferenceX. Yao, K. Klyukin, W. Lu, M. Onen, S. Ryu, D. Kim, N. Emond, I. Waluyo, A. Hunt, J. A. del Alamo, J. Li, B. Yildiz, Nat. Commun. 2020, 11, 3134.
dc.identifier.citedreferenceJ. Lee, R. D. Nikam, M. Kwak, H. Hwang, ACS Appl. Mater. Interfaces 2022, 14, 13450.
dc.identifier.citedreferenceJ. Lee, R. D. Nikam, M. Kwak, H. Kwak, S. Kim, H. Hwang, Adv. Electron. Mater. 2021, 7, 2100219.
dc.identifier.citedreferenceR. D. Nikam, M. Kwak, H. Hwang, Adv. Electron. Mater. 2021, 7, 2100142.
dc.identifier.citedreferenceR. D. Nikam, J. Lee, W. Choi, D. Kim, H. Hwang, ACS Nano 2022, 16, 12214.
dc.identifier.citedreferenceA. Melianas, M.-A. Kang, A. VahidMohammadi, T. J. Quill, W. Tian, Y. Gogotsi, A. Salleo, M. M. Hamedi, Adv. Funct. Mater. 2022, 32, 2109970.
dc.identifier.citedreferenceY. Li, T. P. Xiao, C. H. Bennett, E. Isele, A. Melianas, H. Tao, M. J. Marinella, A. Salleo, E. J. Fuller, A. A. Talin, Front. Neurosci. 2021, 15, 636127.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.