Show simple item record

Metastatic prostate cancer diagnosed by fine-needle aspiration: Contemporary cytopathologic and biomarker assessment with clinical correlates

dc.contributor.authorCantley, Richard L.
dc.contributor.authorWang, Xiaoming
dc.contributor.authorReichert, Zachery R.
dc.contributor.authorChinnaiyan, Arul M.
dc.contributor.authorMannan, Rahul
dc.contributor.authorCao, Xuhong
dc.contributor.authorSpratt, Daniel E.
dc.contributor.authorVaishampayan, Ulka N.
dc.contributor.authorAlumkal, Joshi J.
dc.contributor.authorMorgan, Todd M.
dc.contributor.authorPalapattu, Ganesh
dc.contributor.authorDavenport, Matthew S.
dc.contributor.authorPantanowitz, Liron
dc.contributor.authorMehra, Rohit
dc.date.accessioned2023-03-03T21:08:26Z
dc.date.available2024-03-03 16:08:18en
dc.date.available2023-03-03T21:08:26Z
dc.date.issued2023-02
dc.identifier.citationCantley, Richard L.; Wang, Xiaoming; Reichert, Zachery R.; Chinnaiyan, Arul M.; Mannan, Rahul; Cao, Xuhong; Spratt, Daniel E.; Vaishampayan, Ulka N.; Alumkal, Joshi J.; Morgan, Todd M.; Palapattu, Ganesh; Davenport, Matthew S.; Pantanowitz, Liron; Mehra, Rohit (2023). "Metastatic prostate cancer diagnosed by fine-needle aspiration: Contemporary cytopathologic and biomarker assessment with clinical correlates." Cancer Cytopathology 131(2): 117-135.
dc.identifier.issn1934-662X
dc.identifier.issn1934-6638
dc.identifier.urihttps://hdl.handle.net/2027.42/175884
dc.description.abstractIntroductionThe diagnosis of metastatic prostatic cancer (MPC) by fine needle aspiration (FNA) can usually be rendered by typical cytomorphologic and immunohistochemical (IHC) features. However, MPC diagnosis may be complicated by transformation to atypical phenotypes such as small cell carcinoma, typically under pressure from androgen deprivation therapy (ADT). Predictive and prognostic biomarkers can also be assessed by IHC. This study illustrates how careful assessment of cytologic and biomarker features may provide therapeutic and prognostic information in MPC.DesignWe reviewed our anatomic pathology archives for MPC diagnosed by FNA from January 2014 to June 2021. Clinical histories, cytology slides, and cell blocks were reviewed. Extensive IHC biomarker workup was performed, including markers of prostate lineage, cell-cycle dysfunction, Ki-67, neuroendocrine markers, PDL1, and androgen receptor splice variant 7. Cases were reclassified into three categories: conventional type, intermediary type, and high-grade neuroendocrine carcinoma (HGNC).ResultsEighteen patients were identified. Twelve had conventional MPC, including six of six ADT-naive patients. Six of twelve (50%) with prior ADT were reclassified as intermediary or HGNC. Four intermediary cases included two with squamous differentiation and two with pro-proliferative features. Two HGNC cases had typical small cell carcinoma cytomorphology. Expression of PDL1 was�identified in�two cases and ARv7 in three cases. Five of five intermediary and HGNC patients died of disease versus six of eleven with with conventional type.ConclusionsAggressive cytomorphologic variants were commonly identified in patients with prior ADT. Identification of nonconventional cytomorphology and increased proliferation can provide important prognostic information. Recognition of these changes is important for an accurate diagnosis, and the identification of high-grade variants can affect therapeutic decision-making. Clinically actionable biomarkers such as PDL1 and ARv7 can be assessed by IHC.Aggressive cytomorphologic variants of metastatic prostate cancer are common in patients treated with androgen deprivation. Recognition of these changes is important for accurate diagnosis, and identification of high-grade variants can impact therapeutic decision making.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othersmall cell carcinoma
dc.subject.othertransdifferentiation
dc.subject.otherandrogen receptor (AR)
dc.subject.othercytopathology
dc.subject.otherfine needle aspiration
dc.subject.otherneuroendocrine
dc.subject.otherprostate cancer
dc.titleMetastatic prostate cancer diagnosed by fine-needle aspiration: Contemporary cytopathologic and biomarker assessment with clinical correlates
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175884/1/cncy22652_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175884/2/cncy22652.pdf
dc.identifier.doi10.1002/cncy.22652
dc.identifier.sourceCancer Cytopathology
dc.identifier.citedreferenceAntonarakis ES, Lu C, Wang H, et�al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014; 371 ( 11 ): 1028 - 1038. doi: 10.1056/nejmoa1315815
dc.identifier.citedreferenceSailer V. Metastatic prostate cancer. In: Robinson B, Mosquera J, Ro J, Divatia M, eds. Precision Molecular Pathology of Prostate Cancer. Molecular Pathology Library. Springer; 2018.
dc.identifier.citedreferenceHamdy FC, Donovan JL, Lane JA, et�al. Active monitoring, radical prostatectomy and radical radiotherapy in PSA-detected clinically localised prostate cancer: the ProtecT three-arm RCT. Health Technol Assess. 2020; 24 ( 37 ): 1 - 176. doi: 10.3310/hta24370
dc.identifier.citedreferenceDonnelly AE, Den R. Radiotherapy for prostate cancer. In: Trabulsi EJ, Lallas CD, Lizardi-Calvaresi AE, eds. Chemotherapy and Immunotherapy in Urologic Oncology. Springer; 2021.
dc.identifier.citedreferenceReyes C, Groshel C, Given R. Androgen deprivation therapy. In: Trabulsi EJ, Lallas CD, Lizardi-Calvaresi AE, eds. Chemotherapy and Immunotherapy in Urologic Oncology. Springer; 2021.
dc.identifier.citedreferenceSartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med. 2018; 378 ( 7 ): 645 - 657. doi: 10.1056/nejmra1701695
dc.identifier.citedreferenceBubendorf L, Sch�pfer A, Wagner U, et�al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000; 31 ( 5 ): 578 - 583. doi: 10.1053/hp.2000.6698
dc.identifier.citedreferenceAlbadri ST, Salom�o D. Metastatic prostate adenocarcinoma to cervical lymph nodes: an unusual diagnosis on fine-needle aspiration biopsy. J Am Soc Cytopathol. 2021; 10 ( 2 ): 231 - 238. doi: 10.1016/j.jasc.2020.08.009
dc.identifier.citedreferenceGan Q, Joseph CT, Guo M, Zhang M, Sun X, Gong Y. Utility of NKX3.1 immunostaining in the detection of metastatic prostatic carcinoma on fine-needle aspiration smears. Am J Clin Pathol. 2019; 152 ( 4 ): 495 - 501. doi: 10.1093/ajcp/aqz063
dc.identifier.citedreferenceAbdulfatah E, Reichert ZR, Davenport MS, et�al. De novo neuroendocrine transdifferentiation in primary prostate cancer-a phenotype associated with advanced clinico-pathologic features and aggressive outcome. Med Oncol. 2021; 38 ( 3 ): 26. doi: 10.1007/s12032-021-01473-2
dc.identifier.citedreferenceAbdulfatah E, Fine SW, Lotan T, Mehra R. De novo neuroendocrine features in prostate cancer. Hum Pathol. 2022; 127: 112 - 122. doi: 10.1016/j.humpath.2022.07.002
dc.identifier.citedreferenceBeltran H, Hruszkewycz A, Scher HI, et�al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res. 2019; 25 ( 23 ): 6916 - 6924. doi: 10.1158/1078-0432.CCR-19-1423
dc.identifier.citedreferenceCackowski FC, Kumar-Sinha C, Mehra R, et�al. Double-negative prostate cancer masquerading as a squamous cancer of unknown primary: a clinicopathologic and genomic sequencing-based case study. JCO Precis Oncol. 2020; 4: PO.20.00309.
dc.identifier.citedreferenceParwani AV, Ali SZ. Prostatic adenocarcinoma metastases mimicking small cell carcinoma on fine-needle aspiration. Diagn Cytopathol. 2002; 27 ( 2 ): 75 - 79. doi: 10.1002/dc.10146
dc.identifier.citedreferenceSchiewer MJ, Augello MA, Knudsen KE. The AR dependent cell cycle:�mechanisms and cancer relevance. Mol Cell Endocrinol. 2012; 352 ( 1-2 ): 34 - 45. doi: 10.1016/j.mce.2011.06.033
dc.identifier.citedreferencede Brot S, Mongan NP. The cell cycle and androgen signaling interactions in prostate cancer. In: Robinson B, Mosquera J, Ro J, Divatia M, eds. Precision Molecular Pathology of Prostate Cancer. Molecular Pathology Library. Springer; 2018.
dc.identifier.citedreferencePisano C, Tucci M, Di Stefano RF, et�al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: current and future clinical implications. Crit Rev Oncol Hematol. 2021; 157: 103185. doi: 10.1016/j.critrevonc.2020.103185
dc.identifier.citedreferenceHelsen C, Van den Broeck T, Voet A, et�al. Androgen receptor antagonists for prostate cancer therapy. Endocr Relat Cancer. 2014; 21 ( 4 ): T105 - T118. doi: 10.1530/erc-13-0545
dc.identifier.citedreferenceShah RB, Mehra R, Chinnaiyan AM, et�al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004; 64 ( 24 ): 9209 - 9216. doi: 10.1158/0008-5472.can-04-2442
dc.identifier.citedreferenceTamada S, Iguchi T, Kato M, et�al. Time to progression to castration-resistant prostate cancer after commencing combined androgen blockade for advanced hormone-sensitive prostate cancer. Oncotarget. 2018; 9 ( 97 ): 36966 - 36974. doi: 10.18632/oncotarget.26426
dc.identifier.citedreferenceLotan TL. PI3K/Akt/mTOR/PTEN and ERK/MAPK pathways. In: Robinson B, Mosquera J, Ro J, Divatia M, eds. Precision Molecular Pathology of Prostate Cancer. Molecular Pathology Library. Springer; 2018.
dc.identifier.citedreferenceGopalan A, Al-Ahmadie H, Chen YB, et�al. Neuroendocrine differentiation in the setting of prostatic carcinoma: contemporary assessment of a consecutive series. Histopathology. 2022; 81 ( 2 ): 246 - 254. doi: 10.1111/his.14707
dc.identifier.citedreferenceManucha V, Henegan J. Clinicopathologic diagnostic approach to aggressive variant prostate cancer. Arch Pathol Lab Med. 2020; 144 ( 1 ): 18 - 23. doi: 10.5858/arpa.2019-0124-ra
dc.identifier.citedreferenceBryden AA, Freemont AJ, Clarke NW, George NJ. Ki-67 index in metastatic prostate cancer. Eur Urol. 2001; 40 ( 6 ): 673 - 676. doi: 10.1159/000049856
dc.identifier.citedreferenceHaffner MC, Guner G, Taheri D, et�al. Comprehensive evaluation of programmed death-ligand 1 expression in primary and metastatic prostate cancer. Am J Pathol. 2018; 188 ( 6 ): 1478 - 1485. doi: 10.1016/j.ajpath.2018.02.014
dc.identifier.citedreferenceSharma M, Yang Z, Miyamoto H. Immunohistochemistry of immune checkpoint markers PD-1 and PD-L1 in prostate cancer. Medicine (Baltim). 2019; 98 ( 38 ): e17257. doi: 10.1097/md.0000000000017257
dc.identifier.citedreferenceK�ronya Z, S�k�sd F, Varga L, et�al. ERG expression can predict the outcome of docetaxel combined with androgen deprivation therapy in metastatic hormone-sensitive prostate cancer. Urol Oncol. 2019; 37 ( 4 ): 289.e1 - 289.e9. doi: 10.1016/j.urolonc.2018.12.007
dc.identifier.citedreferenceTomlins SA, Rhodes DR, Perner S, et�al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310 ( 5748 ): 644 - 648. doi: 10.1126/science.1117679
dc.identifier.citedreferenceJamaspishvili T, Berman DM, Ross AE, et�al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018; 15 ( 4 ): 222 - 234. doi: 10.1038/nrurol.2018.9
dc.identifier.citedreferenceTsai H, Morais CL, Alshalalfa M, et�al. Cyclin D1 loss distinguishes prostatic small-cell carcinoma from most prostatic adenocarcinomas. Clin Cancer Res. 2015; 21 ( 24 ): 5619 - 5629. doi: 10.1158/1078-0432.ccr-15-0744
dc.identifier.citedreferenceHu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol. 2015; 5 ( 90 ). doi: 10.3389/fonc.2015.00090
dc.identifier.citedreferenceObata H, Shiota M, Akitake N, et�al. Differential risk of castration resistance after initial radical prostatectomy or radiotherapy for prostate cancer. Anticancer Res. 2017; 37 ( 10 ): 5631 - 5637.
dc.identifier.citedreferenceUdager AM, Shi Y, Tomlins SA, et�al. Frequent discordance between ERG gene rearrangement and ERG protein expression in a rapid autopsy cohort of patients with lethal, metastatic, castration-resistant prostate cancer. Prostate. 2014; 74 ( 12 ): 1199 - 1208. doi: 10.1002/pros.22836
dc.identifier.citedreferenceMehra R, Tomlins SA, Yu J, et�al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 2008; 68 ( 10 ): 3584 - 3590. doi: 10.1158/0008-5472.can-07-6154
dc.identifier.citedreferenceByun SS, Lee M, Hong SK, Lee H. Elevated Ki-67 (MIB-1) expression as an independent predictor for unfavorable pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with localized prostate cancer: a propensity score matched study. PLoS One. 2019; 14 ( 11 ): e0224671. doi: 10.1371/journal.pone.0224671
dc.identifier.citedreferenceKammerer-Jacquet SF, Ahmad A, M�ller H, et�al. Ki-67 is an independent predictor of prostate cancer death in routine needle biopsy samples: proving utility for routine assessments. Mod Pathol. 2019; 32 ( 9 ): 1303 - 1309. doi: 10.1038/s41379-019-0268-y
dc.identifier.citedreferenceLotan TL, Tomlins SA, Bismar TA, et�al. Report from the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular biomarkers in prostate cancer. Am J Surg Pathol. 2020; 44 ( 7 ): e15 - e29. doi: 10.1097/PAS.0000000000001450
dc.identifier.citedreferenceSiegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA - Cancer J Clin. 2022; 72 ( 1 ): 7 - 33. doi: 10.3322/caac.21708
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.