Show simple item record

Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases

dc.contributor.authorLi, Guoping
dc.contributor.authorChen, Tianji
dc.contributor.authorDahlman, James
dc.contributor.authorEniola-Adefeso, Lola
dc.contributor.authorGhiran, Ionita C.
dc.contributor.authorKurre, Peter
dc.contributor.authorLam, Wilbur A.
dc.contributor.authorLang, Jennifer K.
dc.contributor.authorMarbán, Eduardo
dc.contributor.authorMartín, Pilar
dc.contributor.authorMomma, Stefan
dc.contributor.authorMoos, Malcolm
dc.contributor.authorNelson, Deborah J.
dc.contributor.authorRaffai, Robert L.
dc.contributor.authorRen, Xi
dc.contributor.authorSluijter, Joost P. G.
dc.contributor.authorStott, Shannon L.
dc.contributor.authorVunjak-Novakovic, Gordana
dc.contributor.authorWalker, Nykia D.
dc.contributor.authorWang, Zhenjia
dc.contributor.authorWitwer, Kenneth W.
dc.contributor.authorYang, Phillip C.
dc.contributor.authorLundberg, Martha S.
dc.contributor.authorOchocinska, Margaret J.
dc.contributor.authorWong, Renee
dc.contributor.authorZhou, Guofei
dc.contributor.authorChan, Stephen Y.
dc.contributor.authorDas, Saumta
dc.contributor.authorSundd, Prithu
dc.date.accessioned2023-03-03T21:09:38Z
dc.date.available2024-03-03 16:09:36en
dc.date.available2023-03-03T21:09:38Z
dc.date.issued2023-02
dc.identifier.citationLi, Guoping; Chen, Tianji; Dahlman, James; Eniola-Adefeso, Lola ; Ghiran, Ionita C.; Kurre, Peter; Lam, Wilbur A.; Lang, Jennifer K.; Marbán, Eduardo ; Martín, Pilar ; Momma, Stefan; Moos, Malcolm; Nelson, Deborah J.; Raffai, Robert L.; Ren, Xi; Sluijter, Joost P. G.; Stott, Shannon L.; Vunjak-Novakovic, Gordana ; Walker, Nykia D.; Wang, Zhenjia; Witwer, Kenneth W.; Yang, Phillip C.; Lundberg, Martha S.; Ochocinska, Margaret J.; Wong, Renee; Zhou, Guofei; Chan, Stephen Y.; Das, Saumta; Sundd, Prithu (2023). "Current challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases." Journal of Extracellular Vesicles 12(2): n/a-n/a.
dc.identifier.issn2001-3078
dc.identifier.issn2001-3078
dc.identifier.urihttps://hdl.handle.net/2027.42/175910
dc.description.abstractExtracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHeart, lung, blood and sleep (HLBS) diseases
dc.subject.othertherapeutics and diagnostics
dc.subject.otherextracellular vesicles (EVs)
dc.titleCurrent challenges and future directions for engineering extracellular vesicles for heart, lung, blood and sleep diseases
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175910/1/jev212305_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175910/2/jev212305.pdf
dc.identifier.doi10.1002/jev2.12305
dc.identifier.sourceJournal of Extracellular Vesicles
dc.identifier.citedreferenceRoccaro, A. M., Sacco, A., Maiso, P., Azab, A. K., Tai, Y. T., Reagan, M., Azab, F., Flores, L. M., Campigotto, F., Weller, E., Anderson, K. C., Scadden, D. T., & Ghobrial, I. M. ( 2013 ). BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation, 123, 1542 – 1555. https://doi.org/10.1172/JCI66517
dc.identifier.citedreferenceSago, C. D., Lokugamage, M. P., Paunovska, K., Vanover, D. A., Monaco, C. M., Shah, N. N., Gamboa Castro, M., Anderson, S. E., Rudoltz, T. G., Lando, G. N., Munnilal Tiwari, P., Kirschman, J. L., Willett, N., Jang, Y. C., Santangelo, P. J., Bryksin, A. V., & Dahlman, J. E. ( 2018 ). High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. PNAS, 115, E9944 – E9952. https://doi.org/10.1073/pnas.1811276115
dc.identifier.citedreferenceSahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K. M., Millay, M., Ito, A., Liu, T., Kamide, C., Agrawal, H., Perlman, H., Qin, G., Kishore, R., & Losordo, D. W. ( 2011 ). Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circulation Research, 109, 724 – 728. https://doi.org/10.1161/CIRCRESAHA.111.253286
dc.identifier.citedreferenceSato, Y. T., Umezaki, K., Sawada, S., Mukai, S. A., Sasaki, Y., Harada, N., Shiku, H., & Akiyoshi, K. ( 2016 ). Engineering hybrid exosomes by membrane fusion with liposomes. Scientific Reports, 6, 21933. https://doi.org/10.1038/srep21933
dc.identifier.citedreferenceSchepers, K., Pietras, E. M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., Wagers, A. J., Hsiao, E. C., & Passegue, E. ( 2013 ). Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell, 13, 285 – 299. https://doi.org/10.1016/j.stem.2013.06.009
dc.identifier.citedreferenceShah, R., Patel, T., & Freedman, J. E. ( 2018 ). Circulating Extracellular Vesicles in Human Disease. New England Journal of Medicine, 379, 958 – 966. https://doi.org/10.1056/NEJMra1704286
dc.identifier.citedreferenceSong, N., Scholtemeijer, M., & Shah, K. ( 2020 ). Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends in Pharmacological Sciences, 41, 653 – 664. https://doi.org/10.1016/j.tips.2020.06.009
dc.identifier.citedreferenceSterzenbach, U., Putz, U., Low, L. H., Silke, J., Tan, S. S., & Howitt, J. ( 2017 ). Engineered exosomes as vehicles for biologically active proteins. Molecular Therapy, 25, 1269 – 1278. https://doi.org/10.1016/j.ymthe.2017.03.030
dc.identifier.citedreferenceSun, S. J., Wei, R., Li, F., Liao, S. Y., & Tse, H. F. ( 2021 ). Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports, 16, 1662 – 1673. https://doi.org/10.1016/j.stemcr.2021.05.003
dc.identifier.citedreferenceSung, B. H., von Lersner, A., Guerrero, J., Krystofiak, E. S., Inman, D., Pelletier, R., Zijlstra, A., Ponik, S. M., & Weaver, A. M. ( 2020 ). A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nature Communications, 11, 2092. https://doi.org/10.1038/s41467-020-15747-2
dc.identifier.citedreferenceSzczepanski, M. J., Szajnik, M., Czystowska, M., Mandapathil, M., Strauss, L., Welsh, A., Foon, K. A., Whiteside, T. L., & Boyiadzis, M. ( 2009 ). Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clinical Cancer Research, 15, 3325 – 3332. https://doi.org/10.1158/1078-0432.CCR-08-3010
dc.identifier.citedreferenceTeng, F., & Fussenegger, M. ( 2020 ). Shedding light on extracellular vesicle biogenesis and bioengineering. Advance Science (Weinh), 8, 2003505. https://doi.org/10.1002/advs.202003505
dc.identifier.citedreferenceTessier, S. N., Bookstaver, L. D., Angpraseuth, C., Stannard, C. J., Marques, B., Ho, U. K., Muzikansky, A., Aldikacti, B., Reategui, E., Rabe, D. C., Toner, M., & Stott, S. L ( 2021 ). Isolation of intact extracellular vesicles from cryopreserved samples. PLoS One, 16, e0251290. https://doi.org/10.1371/journal.pone.0251290
dc.identifier.citedreferenceThangaraju, K., Neerukonda, S. N., Katneni, U., & Buehler, P. W. ( 2021 ). Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. International Journal of Molecular Sciences, 22, 153. 10.3390/ijms22010153
dc.identifier.citedreferenceThery, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. - M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., … Zuba-Surma, E. K. ( 2018 ). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750. https://doi.org/10.1080/20013078.2018.1535750
dc.identifier.citedreferenceTian, Y., Gong, M., Hu, Y., Liu, H., Zhang, W., Zhang, M., Hu, X., Aubert, D., Zhu, S., Wu, L., & Yan, X. ( 2020 ). Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Journal of Extracellular Vesicles, 9, 1697028. https://doi.org/10.1080/20013078.2019.1697028
dc.identifier.citedreferenceTian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., Wei, J., & Nie, G. ( 2014 ). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35, 2383 – 2390. https://doi.org/10.1016/j.biomaterials.2013.11.083
dc.identifier.citedreferenceVader, P., Mol, E. A., Pasterkamp, G., & Schiffelers, R. M. ( 2016 ). Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews, 106, 148 – 156. https://doi.org/10.1016/j.addr.2016.02.006
dc.identifier.citedreferenceValkov, N., Das, A., Tucker, N. R., Li, G., Salvador, A. M., Chaffin, M. D., Pereira De Oliveira Junior, G., Kur, I., Gokulnath, P., Ziegler, O., Yeri, A., Lu, S., Khamesra, A., Xiao, C., Rodosthenous, R., Srinivasan, S., Toxavidis, V., Tigges, J., Laurent, L. C., … Das, S. ( 2021 ). SnRNA sequencing defines signaling by RBC-derived extracellular vesicles in the murine heart. Life Science Alliance, 4 (, e202101048. 10.26508/lsa.202101048
dc.identifier.citedreferenceVandergriff, A., Huang, K., Shen, D., Hu, S., Hensley, M. T., Caranasos, T. G., Qian, L., & Cheng, K. ( 2018 ). Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 8, 1869 – 1878. https://doi.org/10.7150/thno.20524
dc.identifier.citedreferencevan der Koog, L., Gandek, T. B., & Nagelkerke, A. ( 2022 ). Liposomes and extracellular vesicles as drug delivery systems: A comparison of composition, pharmacokinetics, and functionalization. Advanced Healthcare Materials, 11, e2100639. https://doi.org/10.1002/adhm.202100639
dc.identifier.citedreferencevan der Pol, E., Boing, A. N., Gool, E. L., & Nieuwland, R. ( 2016 ). Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles. Journal of Thrombosis and Haemostasis, 14, 48 – 56. https://doi.org/10.1111/jth.13190
dc.identifier.citedreferencevan Niel, G., D’Angelo, G., & Raposo, G. ( 2018 ). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19, 213 – 228. https://doi.org/10.1038/nrm.2017.125
dc.identifier.citedreferenceYong, T., Zhang, X., Bie, N., Zhang, H., Zhang, X., Li, F., Hakeem, A., Hu, J., Gan, L., Santos, H. A., & Yang, X. ( 2019 ). Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nature Communications, 10, 3838. https://doi.org/10.1038/s41467-019-11718-4
dc.identifier.citedreferenceVats, R., Brzoska, T., Bennewitz, M. F., Jimenez, M. A., Pradhan-Sundd, T., Tutuncuoglu, E., Jonassaint, J., Gutierrez, E., Watkins, S. C., Shiva, S., Scott, M. J., Morelli, A. E., Neal, M. D., Kato, G. J., Gladwin, M. T., & Sundd, P. ( 2020 ). Platelet extracellular vesicles drive inflammasome-IL-1beta-dependent lung injury in sickle cell disease. American Journal of Respiratory and Critical Care Medicine, 201, 33 – 46. https://doi.org/10.1164/rccm.201807-1370OC
dc.identifier.citedreferenceVillarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin-Cofreces, N., Martinez-Herrera, D. J., Pascual-Montano, A., Mittelbrunn, M., & Sanchez-Madrid, F. ( 2013 ). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://doi.org/10.1038/ncomms3980
dc.identifier.citedreferenceViola, S., Traer, E., Huan, J., Hornick, N. I., Tyner, J. W., Agarwal, A., Loriaux, M., Johnstone, B., & Kurre, P. ( 2016 ). Alterations in acute myeloid leukaemia bone marrow stromal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance. British Journal of Haematology, 172, 983 – 986. https://doi.org/10.1111/bjh.13551
dc.identifier.citedreferenceVrijsen, K. R., Maring, J. A., Chamuleau, S. A., Verhage, V., Mol, E. A., Deddens, J. C., Metz, C. H., Lodder, K., van Eeuwijk, E. C., van Dommelen, S. M., Doevendans, P. A., Smits, A. M., Goumans, M.-J., & Sluijter, J. P. G. ( 2016 ). Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Advanced Healthcare Materials, 5, 2555 – 2565. https://doi.org/10.1002/adhm.201600308
dc.identifier.citedreferenceWalker, N. D., Elias, M., Guiro, K., Bhatia, R., Greco, S. J., Bryan, M., Gergues, M., Sandiford, O. A., Ponzio, N. M., Leibovich, S. J., & Rameshwar, P. ( 2019 ). Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death & Disease, 10, 59. https://doi.org/10.1038/s41419-019-1304-z
dc.identifier.citedreferenceWalker, N. D., Mourad, Y., Liu, K., Buxhoeveden, M., Schoenberg, C., Eloy, J. D., Wilson, D. J., Brown, L. G., Botea, A., Chaudhry, F., Greco, S. J., Ponzio, N. M., Pyrsopoulos, N., Koneru, B., Gubenko, Y., & Rameshwar, P. ( 2017 ). Steroid-mediated decrease in blood mesenchymal stem cells in liver transplant could impact long-term recovery. Stem Cell Reviews and Reports, 13, 644 – 658. https://doi.org/10.1007/s12015-017-9751-3
dc.identifier.citedreferenceWang, H., Maimaitiaili, R., Yao, J., Xie, Y., Qiang, S., Hu, F., Li, X., Shi, C., Jia, P., Yang, H., Wei, M., Zhao, J., Zhou, Z., Xie, J., Jiang, J., Cai, H., Sluijter, J. P. G., Xu, Y., Zhang, Y., & Xiao, J. ( 2021 ). Percutaneous intracoronary delivery of plasma extracellular vesicles protects the myocardium against ischemia-reperfusion injury in canis. Hypertension, 78, 1541 – 1554. https://doi.org/10.1161/HYPERTENSIONAHA.121.17574
dc.identifier.citedreferenceWang, Z. ( 2016 ). Imaging nanotherapeutics in inflamed vasculature by intravital microscopy. Theranostics, 6, 2431 – 2438. https://doi.org/10.7150/thno.16307
dc.identifier.citedreferenceWang, Z., Li, J., Cho, J., & Malik, A. B. ( 2014 ). Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nature Nanotechnology, 9, 204 – 210. https://doi.org/10.1038/nnano.2014.17
dc.identifier.citedreferenceWen, S., Dooner, M., Cheng, Y., Papa, E., Del Tatto, M., Pereira, M., Deng, Y., Goldberg, L., Aliotta, J., Chatterjee, D., Stewart, C., Carpanetto, A., Collino, F., Bruno, S., Camussi, G., & Quesenberry, P. ( 2016 ). Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia, 30, 2221 – 2231. https://doi.org/10.1038/leu.2016.107
dc.identifier.citedreferenceWitwer, K. W., & Wolfram, J. ( 2021 ). Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nature Reviews Materials, 6, 103 – 106. https://doi.org/10.1038/s41578-020-00277-6
dc.identifier.citedreferenceWlodarczyk-Biegun, M. K., & Del Campo, A. ( 2017 ). 3D bioprinting of structural proteins. Biomaterials, 134, 180 – 201. https://doi.org/10.1016/j.biomaterials.2017.04.019
dc.identifier.citedreferenceWong, K. H. K., Tessier, S. N., Miyamoto, D. T., Miller, K. L., Bookstaver, L. D., Carey, T. R., Stannard, C. J., Thapar, V., Tai, E. C., Vo, K. D., Emmons, E. S., Pleskow, H. M., Sandlin, R. D., Sequist, L. V., Ting, D. T., Haber, D. A., Maheswaran, S., Stott, S. L., & Toner, M. ( 2017 ). Whole blood stabilization for the microfluidic isolation and molecular characterization of circulating tumor cells. Nature Communications, 8, 1733. https://doi.org/10.1038/s41467-017-01705-y
dc.identifier.citedreferenceXie, F., Su, P., Pan, T., Zhou, X., Li, H., Huang, H., Wang, A., Wang, F., Huang, J., Yan, H., Zeng, L., Zhang, L., & Zhou, F. ( 2021 ). Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Advanced Materials, 33, e2103471. https://doi.org/10.1002/adma.202103471
dc.identifier.citedreferenceXing, Y., Yerneni, S. S., Wang, W., Taylor, R. E., Campbell, P. G., & Ren, X. ( 2022 ). Engineering pro-angiogenic biomaterials via chemoselective extracellular vesicle immobilization. Biomaterials, 281, 121357. https://doi.org/10.1016/j.biomaterials.2021.121357
dc.identifier.citedreferenceXunian, Z., & Kalluri, R. ( 2020 ). Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Science, 111, 3100 – 3110. https://doi.org/10.1111/cas.14563
dc.identifier.citedreferenceYanez-Mo, M., Siljander, P. R., Andreu, Z., Zavec, A. B., Borras, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., Cordeiro-da Silva, A., Fais, S., Falcon-Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I., … De Wever, O. ( 2015 ). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4, 27066. https://doi.org/10.3402/jev.v4.27066
dc.identifier.citedreferenceYang, L., Zhu, J., Zhang, C., Wang, J., Yue, F., Jia, X., & Liu, H. ( 2019 ). Stem cell-derived extracellular vesicles for myocardial infarction: A meta-analysis of controlled animal studies. Aging (Albany NY), 11, 1129 – 1150. 10.18632/aging.101814
dc.identifier.citedreferenceZhang, H., Freitas, D., Kim, H. S., Fabijanic, K., Li, Z., Chen, H., Mark, M. T., Molina, H., Martin, A. B., Bojmar, L., Fang, J., Rampersaud, S., Hoshino, A., Matei, I., Kenific, C. M., Nakajima, M., Mutvei, A. P., Sansone, P., Buehring, W., … Lyden, D. ( 2018 ). Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology, 20, 332 – 343. https://doi.org/10.1038/s41556-018-0040-4
dc.identifier.citedreferenceZhang, J., Cheng, D., He, J., Hong, J., Yuan, C., & Liang, M. ( 2021 ). Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nature Protocols, 16, 4878 – 4896. https://doi.org/10.1038/s41596-021-00602-5
dc.identifier.citedreferenceZhang, Q., Higginbotham, J. N., Jeppesen, D. K., Yang, Y. P., Li, W., McKinley, E. T., Graves-Deal, R., Ping, J., Britain, C. M., Dorsett, K. A., Hartman, C. L., Ford, D. A., Allen, R. M., Vickers, K. C., Liu, Q., Franklin, J. L., Bellis, S. L., & Coffey, R. J. ( 2019 ). Transfer of functional cargo in exomeres. Cell Reports, 27, 940 – 954e946. https://doi.org/10.1016/j.celrep.2019.01.009
dc.identifier.citedreferenceZhang, Q., Jeppesen, D. K., Higginbotham, J. N., Graves-Deal, R., Trinh, V. Q., Ramirez, M. A., Sohn, Y., Neininger, A. C., Taneja, N., McKinley, E. T., Niitsu, H., Cao, Z., Evans, R., Glass, S. E., Ray, K. C., Fissell, W. H., Hill, S., Rose, K. L., Huh, W. J., … Coffey, R. J. ( 2021 ). Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nature Cell Biology, 23, 1240 – 1254. https://doi.org/10.1038/s41556-021-00805-8
dc.identifier.citedreferenceZhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., Ju, S., Mu, J., Zhang, L., Steinman, L., Miller, D., & Zhang, H.-G. ( 2011 ). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 19, 1769 – 1779. https://doi.org/10.1038/mt.2011.164
dc.identifier.citedreferenceAatonen, M., Gronholm, M., & Siljander, P. R. ( 2012 ). Platelet-derived microvesicles: Multitalented participants in intercellular communication. Seminars in Thrombosis and Hemostasis, 38, 102 – 113. https://doi.org/10.1055/s-0031-1300956
dc.identifier.citedreferenceAbdelhamed, S., Butler, J. T., Doron, B., Halse, A., Nemecek, E., Wilmarth, P. A., Marks, D. L., Chang, B. H., Horton, T., & Kurre, P. ( 2019 ). Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. Embo Reports, 20, e47546. 10.15252/embr.201847546
dc.identifier.citedreferenceAbdelhamed, S., Butler, J. T., Jung, S., Chen, D. W., Jenkins, G., Gao, L., Lim, J. Y., Klco, J. M., Horton, T. M., & Kurre, P. ( 2021 ). Rational biomarker development for the early and minimally invasive monitoring of AML. Blood Advances, 5, 4515 – 4520. https://doi.org/10.1182/bloodadvances.2021004621
dc.identifier.citedreferenceAkinc, A., Querbes, W., De, S., Qin, J., Frank-Kamenetsky, M., Jayaprakash, K. N., Jayaraman, M., Rajeev, K. G., Cantley, W. L., Dorkin, J. R., Butler, J. S., Qin, L., Racie, T., Sprague, A., Fava, E., Zeigerer, A., Hope, M. J., Zerial, M., Sah, D. W., … Maier, M. A. ( 2010 ). Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Molecular Therapy, 18, 1357 – 1364. https://doi.org/10.1038/mt.2010.85
dc.identifier.citedreferenceAkinduro, O., Weber, T. S., Ang, H., Haltalli, M. L. R., Ruivo, N., Duarte, D., Rashidi, N. M., Hawkins, E. D., Duffy, K. R., & Lo Celso, C. ( 2018 ). Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nature Communications, 9, 519. https://doi.org/10.1038/s41467-017-02376-5
dc.identifier.citedreferenceAlexander, M., Ramstead, A. G., Bauer, K. M., Lee, S. H., Runtsch, M. C., Wallace, J., Huffaker, T. B., Larsen, D. K., Tolmachova, T., Seabra, M. C., Round, J. L., Ward, D. M., & O’Connell, R. M. ( 2017 ). Rab27-dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli. Journal of Immunology, 199, 3559 – 3570. https://doi.org/10.4049/jimmunol.1700904
dc.identifier.citedreferenceAliotta, J. M., Lee, D., Puente, N., Faradyan, S., Sears, E. H., Amaral, A., Goldberg, L., Dooner, M. S., Pereira, M., & Quesenberry, P. J. ( 2012 ). Progenitor/stem cell fate determination: Interactive dynamics of cell cycle and microvesicles. Stem Cells and Development, 21, 1627 – 1638. https://doi.org/10.1089/scd.2011.0550
dc.identifier.citedreferenceAndaloussi, S. E. L., Mäger, I., Breakefield, X. O., & Wood, M. J. ( 2013 ). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Review Drug Discovery, 12, 347 – 357. https://doi.org/10.1038/nrd3978
dc.identifier.citedreferenceAnselmo, A. C., & Mitragotri, S. ( 2021 ). Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioengineering and Translational Medicine, 6 ): e10246. https://doi.org/10.1002/btm2.10246
dc.identifier.citedreferenceBabatunde, K. A., Mbagwu, S., Hernandez-Castaneda, M. A., Adapa, S. R., Walch, M., Filgueira, L., Falquet, L., Jiang, R. H. Y., Ghiran, I., & Mantel, P. Y. ( 2018 ). Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles. Scientific Reports, 8, 884. https://doi.org/10.1038/s41598-018-19149-9
dc.identifier.citedreferenceBarile, L., Cervio, E., Lionetti, V., Milano, G., Ciullo, A., Biemmi, V., Bolis, S., Altomare, C., Matteucci, M., Di Silvestre, D., Brambilla, F., Fertig, T. E., Torre, T., Demertzis, S., Mauri, P., Moccetti, T., & Vassalli, G. ( 2018 ). Cardioprotection by cardiac progenitor cell-secreted exosomes: Role of pregnancy-associated plasma protein-A. Cardiovascular Research, 114, 992 – 1005. https://doi.org/10.1093/cvr/cvy055
dc.identifier.citedreferenceBauer, N., Wilsch-Brauninger, M., Karbanova, J., Fonseca, A. V., Strauss, D., Freund, D., Thiele, C., Huttner, W. B., Bornhauser, M., & Corbeil, D. ( 2011 ). Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles – A role of the endocytic-exocytic pathway. EMBO Molecular Medicine, 3, 398 – 409. https://doi.org/10.1002/emmm.201100147
dc.identifier.citedreferenceBlanco-Dominguez, R., Sanchez-Diaz, R., de la Fuente, H., Jimenez-Borreguero, L. J., Matesanz-Marin, A., Relano, M., Jimenez-Alejandre, R., Linillos-Pradillo, B., Tsilingiri, K., Martin-Mariscal, M. L., Alonso-Herranz, L., Moreno, G., Martín-Asenjo, R., García-Guimaraes, M. M., Bruno, K. A., Dauden, E., González-Álvaro, I., Villar-Guimerans, L. M., Martínez-León, A., … Martín, P. ( 2021 ). A novel circulating microRNA for the detection of acute myocarditis. New England Journal of Medicine, 384, 2014 – 2027. https://doi.org/10.1056/NEJMoa2003608
dc.identifier.citedreferenceBoon, R. A., & Dimmeler, S. ( 2015 ). MicroRNAs in myocardial infarction. Nature Reviews Cardiology, 12, 135 – 142. https://doi.org/10.1038/nrcardio.2014.207
dc.identifier.citedreferenceBorger, V., Bremer, M., Ferrer-Tur, R., Gockeln, L., Stambouli, O., Becic, A., & Giebel, B. ( 2017 ). Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. International Journal of Molecular Sciences, 18, 1450. https://doi.org/10.3390/ijms18071450
dc.identifier.citedreferenceBouchareychas, L., Duong, P., Covarrubias, S., Alsop, E., Phu, T. A., Chung, A., Gomes, M., Wong, D., Meechoovet, B., Capili, A., Yamamoto, R., Nakauchi, H., McManus, M. T., Carpenter, S., Van Keuren-Jensen, K., & Raffai, R. L. ( 2020 ). Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo. Cell Reports, 32, 107881. https://doi.org/10.1016/j.celrep.2020.107881
dc.identifier.citedreferenceBouchareychas, L., Duong, P., Phu, T. A., Alsop, E., Meechoovet, B., Reiman, R., Ng, M., Yamamoto, R., Nakauchi, H., Gasper, W. J., Van Keuren-Jensen, K., & Raffai, R. L. ( 2021 ). High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis. iScience, 24, 102847. https://doi.org/10.1016/j.isci.2021.102847
dc.identifier.citedreferenceBoyd, A. L., Reid, J. C., Salci, K. R., Aslostovar, L., Benoit, Y. D., Shapovalova, Z., Nakanishi, M., Porras, D. P., Almakadi, M., Campbell, C. J. V., Jackson, M. F., Ross, C. A., Foley, R., Leber, B., Allan, D. S., Sabloff, M., Xenocostas, A., Collins, T. J., & Bhatia, M. ( 2017 ). Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 19, 1336 – 1347. https://doi.org/10.1038/ncb3625
dc.identifier.citedreferenceBoysen, J., Nelson, M., Magzoub, G., Maiti, G. P., Sinha, S., Goswami, M., Vesely, S. K., Shanafelt, T. D., Kay, N. E., & Ghosh, A. K. ( 2017 ). Dynamics of microvesicle generation in B-cell chronic lymphocytic leukemia: Implication in disease progression. Leukemia, 31, 350 – 360. https://doi.org/10.1038/leu.2016.217
dc.identifier.citedreferenceBuzas, E. I. ( 2022 ). The roles of extracellular vesicles in the immune system. Nature Reviews Immunology, 4, 1 – 15. https://doi.org/10.1038/s41577-022-00763-8
dc.identifier.citedreferenceCamus, S. M., De Moraes, J. A., Bonnin, P., Abbyad, P., Le Jeune, S., Lionnet, F., Loufrani, L., Grimaud, L., Lambry, J. C., Charue, D., Kiger, L., Renard, J.-M., Larroque, C., Le Clésiau, H., Tedgui, A., Bruneval, P., Barja-Fidalgo, C., Alexandrou, A., Tharaux, P.-L., … Blanc-Brude, O. P. ( 2015 ). Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood, 125, 3805 – 3814. https://doi.org/10.1182/blood-2014-07-589283
dc.identifier.citedreferenceCatalano, M., & O’Driscoll, L. ( 2020 ). Inhibiting extracellular vesicles formation and release: A review of EV inhibitors. Journal of Extracellular Vesicles, 9, 1703244. https://doi.org/10.1080/20013078.2019.1703244
dc.identifier.citedreferenceChen, T., Sun, M. R., Zhou, Q., Guzman, A. M., Ramchandran, R., Chen, J., Fraidenburg, D. R., Ganesh, B., Maienschein-Cline, M., Obrietan, K., & Raj, J. U. ( 2022a ). MicroRNA-212-5p, an anti-proliferative miRNA, attenuates hypoxia and sugen/hypoxia-induced pulmonary hypertension in rodents. Molecular Therapy Nucleic Acids, 29, 204 – 216. https://doi.org/10.1016/j.omtn.2022.06.008
dc.identifier.citedreferenceChen, T., Sun, M. R., Zhou, Q., Guzman, A. M., Ramchandran, R., Chen, J., Ganesh, B., & Raj, J. U. ( 2022b ). Extracellular vesicles derived from endothelial cells in hypoxia contribute to pulmonary artery smooth muscle cell proliferation in-vitro and pulmonary hypertension in mice. Pulmonary Circulation, 12, e12014. https://doi.org/10.1002/pul2.12014
dc.identifier.citedreferenceClaridge, B., Lozano, J., Poh, Q. H., & Greening, D. W. ( 2021 ). Development of extracellular vesicle therapeutics: Challenges, considerations, and opportunities. Frontiers in Cell and Developmental Biology, 9, 734720. https://doi.org/10.3389/fcell.2021.734720
dc.identifier.citedreferenceCooper, L. T. Jr ( 2009 ). Myocarditis. New England Journal of Medicine, 360, 1526 – 1538. https://doi.org/10.1056/NEJMra0800028
dc.identifier.citedreferenceCorrado, C., Raimondo, S., Saieva, L., Flugy, A. M., De Leo, G., & Alessandro, R. ( 2014 ). Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Letters, 348, 71 – 76. https://doi.org/10.1016/j.canlet.2014.03.009
dc.identifier.citedreferenceDahlman, J. E., Kauffman, K. J., Xing, Y., Shaw, T. E., Mir, F. F., Dlott, C. C., Langer, R., Anderson, D. G., & Wang, E. T. ( 2017 ). Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. PNAS, 114, 2060 – 2065. https://doi.org/10.1073/pnas.1620874114
dc.identifier.citedreferenceDawidczyk, C. M., Kim, C., Park, J. H., Russell, L. M., Lee, K. H., Pomper, M. G., & Searson, P. C. ( 2014 ). State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. Journal of Controlled Release, 187, 133 – 144. https://doi.org/10.1016/j.jconrel.2014.05.036
dc.identifier.citedreferencede Abreu, R. C., Fernandes, H., da Costa Martins, P. A., Sahoo, S., Emanueli, C., & Ferreira, L. ( 2020 ). Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 17, 685 – 697. https://doi.org/10.1038/s41569-020-0389-5
dc.identifier.citedreferenceDidiot, M. C., Hall, L. M., Coles, A. H., Haraszti, R. A., Godinho, B. M., Chase, K., Sapp, E., Ly, S., Alterman, J. F., Hassler, M. R., Echeverria, D., Raj, L., Morrissey, D. V., DiFiglia, M., Aronin, N., & Khvorova, A. ( 2016 ). Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Molecular Therapy, 24, 1836 – 1847. https://doi.org/10.1038/mt.2016.126
dc.identifier.citedreferenceDiederichsen, L. P. ( 2017 ). Cardiovascular involvement in myositis. Current Opinion in Rheumatology, 29, 598 – 603. https://doi.org/10.1097/BOR.0000000000000442
dc.identifier.citedreferenceDi Marzio, N., Eglin, D., Serra, T., & Moroni, L. ( 2020 ). Bio-fabrication: Convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine. Frontiers in Bioengineering and Biotechnology, 8, 326. https://doi.org/10.3389/fbioe.2020.00326
dc.identifier.citedreferenceDominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. ( 2006 ). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315 – 317. https://doi.org/10.1080/14653240600855905
dc.identifier.citedreferenceDonadee, C., Raat, N. J., Kanias, T., Tejero, J., Lee, J. S., Kelley, E. E., Zhao, X., Liu, C., Reynolds, H., Azarov, I., Frizzell, S., Meyer, E. M., Donnenberg, A. D., Qu, L., Triulzi, D., Kim-Shapiro, D. B., & Gladwin, M. T. ( 2011 ). Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation, 124, 465 – 476. https://doi.org/10.1161/CIRCULATIONAHA.110.008698
dc.identifier.citedreferenceDoron, B., Abdelhamed, S., Butler, J. T., Hashmi, S. K., Horton, T. M., & Kurre, P. ( 2019 ). Transmissible ER stress reconfigures the AML bone marrow compartment. Leukemia, 33, 918 – 930. https://doi.org/10.1038/s41375-018-0254-2
dc.identifier.citedreferenceDoron, B., Handu, M., & Kurre, P. ( 2018 ). Concise Review: Adaptation of the Bone Marrow Stroma in Hematopoietic Malignancies: Current Concepts and Models. Stem Cells, 36, 304 – 312. https://doi.org/10.1002/stem.2761
dc.identifier.citedreferenceDoyle, L. M., & Wang, M. Z. ( 2019 ). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8 ( 7 ), 727. https://doi.org/10.3390/cells8070727
dc.identifier.citedreferenceFang, R. H., Kroll, A. V., Gao, W., & Zhang, L. ( 2018 ). Cell membrane coating nanotechnology. Advanced Materials, 30, e1706759. https://doi.org/10.1002/adma.201706759
dc.identifier.citedreferenceFelker, G. M., Thompson, R. E., Hare, J. M., Hruban, R. H., Clemetson, D. E., Howard, D. L., Baughman, K. L., & Kasper, E. K. ( 2000 ). Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. New England Journal of Medicine, 342, 1077 – 1084. https://doi.org/10.1056/NEJM200004133421502
dc.identifier.citedreferenceFrench, K. C., Antonyak, M. A., & Cerione, R. A. ( 2017 ). Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Seminars in Cell & Developmental Biology, 67, 48 – 55. https://doi.org/10.1016/j.semcdb.2017.01.002
dc.identifier.citedreferenceGallet, R., Dawkins, J., Valle, J., Simsolo, E., de Couto, G., Middleton, R., Tseliou, E., Luthringer, D., Kreke, M., Smith, R. R., Marbán, L., Ghaleh, B., & Marbán, E. ( 2017 ). Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. European Heart Journal, 38, 201 – 211. https://doi.org/10.1093/eurheartj/ehw240
dc.identifier.citedreferenceGannon, M. P., Schaub, E., Grines, C. L., & Saba, S. G. ( 2019 ). State of the art: Evaluation and prognostication of myocarditis using cardiac MRI. Journal of Magnetic Resonance Imaging, 49, e122 – e131. https://doi.org/10.1002/jmri.26611
dc.identifier.citedreferenceGao, J., Chu, D., & Wang, Z. ( 2016 ). Cell membrane-formed nanovesicles for disease-targeted delivery. Journal of Controlled Release, 224, 208 – 216. https://doi.org/10.1016/j.jconrel.2016.01.024
dc.identifier.citedreferenceGao, J., Dong, X., & Wang, Z. ( 2020 ). Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods (San Diego, California), 177, 114 – 125. https://doi.org/10.1016/j.ymeth.2019.11.012
dc.identifier.citedreferenceGao, J., Wang, S., Dong, X., Leanse, L. G., Dai, T., & Wang, Z. ( 2020 ). Co-delivery of resolvin D1 and antibiotics with nanovesicles to lungs resolves inflammation and clears bacteria in mice. Communications Biology, 3, 680. https://doi.org/10.1038/s42003-020-01410-5
dc.identifier.citedreferenceGao, J., Wang, S., & Wang, Z. ( 2017 ). High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials, 135, 62 – 73. https://doi.org/10.1016/j.biomaterials.2017.05.003
dc.identifier.citedreferenceGao, Y., Chen, T., & Raj, J. U. ( 2016 ). Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology, 54, 451 – 460. https://doi.org/10.1165/rcmb.2015-0323TR
dc.identifier.citedreferenceGarcia-Martin, R., Wang, G., Brandao, B. B., Zanotto, T. M., Shah, S., Kumar Patel, S., Schilling, B., & Kahn, C. R. ( 2022 ). MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 601, 446 – 451. https://doi.org/10.1038/s41586-021-04234-3
dc.identifier.citedreferenceGentek, R., Molawi, K., & Sieweke, M. H. ( 2014 ). Tissue macrophage identity and self-renewal. Immunological Reviews, 262, 56 – 73. https://doi.org/10.1111/imr.12224
dc.identifier.citedreferenceGilleron, J., Querbes, W., Zeigerer, A., Borodovsky, A., Marsico, G., Schubert, U., Manygoats, K., Seifert, S., Andree, C., Stoter, M., Epstein-Barash, H., Zhang, L., Koteliansky, V., Fitzgerald, K., Fava, E., Bickle, M., Kalaidzidis, Y., Akinc, A., Maier, M., & Zerial, M. ( 2013 ). Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotechnology, 31, 638 – 646. https://doi.org/10.1038/nbt.2612
dc.identifier.citedreferenceGoloviznina, N. A., Verghese, S. C., Yoon, Y. M., Taratula, O., Marks, D. L., & Kurre, P. ( 2016 ). Mesenchymal stromal cell-derived extracellular vesicles promote myeloid-biased multipotent hematopoietic progenitor expansion via toll-like receptor engagement. Journal of Biological Chemistry, 291, 24607 – 24617. https://doi.org/10.1074/jbc.M116.745653
dc.identifier.citedreferenceGregoriadis, G., & Ryman, B. E. ( 1972 ). Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. European Journal of Biochemistry, 24, 485 – 491. https://doi.org/10.1111/j.1432-1033.1972.tb19710.x
dc.identifier.citedreferenceGu, H., Chen, C., Hao, X., Wang, C., Zhang, X., Li, Z., Shao, H., Zeng, H., Yu, Z., Xie, L., Xia, F., Zhang, F., Liu, X., Zhang, Y., Jiang, H., Zhu, J., Wan, J., Wang, C., Weng, W., … Zheng, J. ( 2016 ). Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. Journal of Clinical Investigation, 126, 4537 – 4553. https://doi.org/10.1172/JCI87105
dc.identifier.citedreferenceGuerrini, L., Alvarez-Puebla, R. A., & Pazos-Perez, N. ( 2018 ). Surface modifications of nanoparticles for stability in biological fluids. Materials(Basel), 11 ( 7 ), 1154. https://doi.org/10.3390/ma11071154
dc.identifier.citedreferenceGuo, M., Wu, F., Hu, G., Chen, L., Xu, J., Xu, P., Wang, X., Li, Y., Liu, S., Zhang, S., Huang, Q., Fan, J., Lv, Z., Zhou, M., Duan, L., Liao, T., Yang, G., Tang, K., Liu, B., … Jin, Y. ( 2019 ). Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Science Translational Medicine, 11 ( 474 ): eaat5690. https://doi.org/10.1126/scitranslmed.aat5690
dc.identifier.citedreferenceGuo, Y., Yu, Y., Hu, S., Chen, Y., & Shen, Z. ( 2020 ). The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death & Disease, 11, 349. https://doi.org/10.1038/s41419-020-2542-9
dc.identifier.citedreferenceHatit, M. Z. C., Lokugamage, M. P., Dobrowolski, C. N., Paunovska, K., Ni, H., Zhao, K., Vanover, D., Beyersdorf, J., Peck, H. E., Loughrey, D., Sato, M., Cristian, A., Santangelo, P. J., & Dahlman, J. E. ( 2022 ). Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nature Nanotechnology, 17, 310 – 318. https://doi.org/10.1038/s41565-021-01030-y
dc.identifier.citedreferenceHerrmann, I. K., Wood, M. J. A., & Fuhrmann, G. ( 2021 ). Extracellular vesicles as a next-generation drug delivery platform. Nature Nanotechnology, 16, 748 – 759. https://doi.org/10.1038/s41565-021-00931-2
dc.identifier.citedreferenceHessvik, N. P., & Llorente, A. ( 2018 ). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193 – 208. https://doi.org/10.1007/s00018-017-2595-9
dc.identifier.citedreferenceHeymans, S., Eriksson, U., Lehtonen, J., & Cooper, L. T. Jr. ( 2016 ). The quest for new approaches in myocarditis and inflammatory cardiomyopathy. Journal of the American College of Cardiology, 68, 2348 – 2364. https://doi.org/10.1016/j.jacc.2016.09.937
dc.identifier.citedreferenceHierso, R., Lemonne, N., Villaescusa, R., Lalanne-Mistrih, M. L., Charlot, K., Etienne-Julan, M., Tressieres, B., Lamarre, Y., Tarer, V., Garnier, Y., Hernandez, A. A., Ferracci, S., Connes, P., Romana, M., & Hardy-Dessources, M.-D. ( 2017 ). Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: A prospective study. British Journal of Haematology, 176, 805 – 813. https://doi.org/10.1111/bjh.14476
dc.identifier.citedreferenceHornick, N. I., Doron, B., Abdelhamed, S., Huan, J., Harrington, C. A., Shen, R., Cambronne, X. A., Chakkaramakkil Verghese, S., & Kurre, P. ( 2016 ). AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Science Signaling, 9, ra88. https://doi.org/10.1126/scisignal.aaf2797
dc.identifier.citedreferenceHornick, N. I., Huan, J., Doron, B., Goloviznina, N. A., Lapidus, J., Chang, B. H., & Kurre, P. ( 2015 ). Serum exosome microRNA as a minimally-invasive early biomarker of AML. Scientific Reports, 5, 11295. https://doi.org/10.1038/srep11295
dc.identifier.citedreferenceHu, M., Lu, Y., Wang, S., Zhang, Z., Qi, Y., Chen, N., Shen, M., Chen, F., Chen, M., Yang, L., Yang, L., Chen, S., Zeng, D., Wang, F., Su, Y., Xu, Y., & Wang, J. ( 2022 ). CD63 acts as a functional marker in maintaining hematopoietic stem cell quiescence through supporting TGFbeta signaling in mice. Cell Death and Differentiation, 29, 178 – 191. https://doi.org/10.1038/s41418-021-00848-2
dc.identifier.citedreferenceHuan, J., Hornick, N. I., Goloviznina, N. A., Kamimae-Lanning, A. N., David, L. L., Wilmarth, P. A., Mori, T., Chevillet, J. R., Narla, A., Roberts, C. T. Jr., Loriaux, M. M., Chang, B. H., & Kurre, P. ( 2015 ). Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia, 29, 2285 – 2295. https://doi.org/10.1038/leu.2015.163
dc.identifier.citedreferenceHuan, J., Hornick, N. I., Shurtleff, M. J., Skinner, A. M., Goloviznina, N. A., Roberts, C. T. Jr., & Kurre, P. ( 2013 ). RNA trafficking by acute myelogenous leukemia exosomes. Cancer Research, 73, 918 – 929. https://doi.org/10.1158/0008-5472.CAN-12-2184
dc.identifier.citedreferenceHuang, F., Goncalves, C., Bartish, M., Remy-Sarrazin, J., Issa, M. E., Cordeiro, B., Guo, Q., Emond, A., Attias, M., Yang, W., Plourde, D., Su, J., Gimeno, M. G., Zhan, Y., Galán, A., Rzymski, T., Mazan, M., Masiejczyk, M., Faber, J., … del Rincón, S. V. ( 2021 ). Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses. Journal of Clinical Investigation, 131, e140752. https://doi.org/10.1172/JCI140752
dc.identifier.citedreferenceHurwitz, S. N., Jung, S. K., & Kurre, P. ( 2020 ). Hematopoietic stem and progenitor cell signaling in the niche. Leukemia, 34, 3136 – 3148. https://doi.org/10.1038/s41375-020-01062-8
dc.identifier.citedreferenceIbrahim, A. G., Cheng, K., & Marban, E. ( 2014 ). Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2, 606 – 619. https://doi.org/10.1016/j.stemcr.2014.04.006
dc.identifier.citedreferenceIida, K., Whitlow, M. B., & Nussenzweig, V. ( 1991 ). Membrane vesiculation protects erythrocytes from destruction by complement. Journal of Immunology, 147, 2638 – 2642.
dc.identifier.citedreferenceYuana, Y., Sturk, A., & Nieuwland, R. ( 2013 ). Extracellular vesicles in physiological and pathological conditions. Blood Reviews, 27, 31 – 39. https://doi.org/10.1016/j.blre.2012.12.002
dc.identifier.citedreferenceIlahibaks, N. F., Lei, Z., Mol, E. A., Deshantri, A. K., Jiang, L., Schiffelers, R. M., Vader, P., & Sluijter, J. P. G. ( 2019 ). Biofabrication of cell-derived nanovesicles: A potential alternative to extracellular vesicles for regenerative medicine. Cells, 8, 1509. https://doi.org/10.3390/cells8121509
dc.identifier.citedreferenceKalluri, R., & LeBleu, V. S. ( 2020 ). The biology, function, and biomedical applications of exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
dc.identifier.citedreferenceKamerkar, S., Leng, C., Burenkova, O., Jang, S. C., McCoy, C., Zhang, K., Dooley, K., Kasera, S., Zi, T., Siso, S., Dahlberg, W., Sia, C. L., Patel, S., Schmidt, K., Economides, K., Soos, T., Burzyn, D., & Sathyanarayanan, S. ( 2022 ). Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Science Advances, 8, eabj7002. https://doi.org/10.1126/sciadv.abj7002
dc.identifier.citedreferenceKarasu, E., Eisenhardt, S. U., Harant, J., & Huber-Lang, M. ( 2018 ). Extracellular vesicles: Packages sent with complement. Frontiers in Immunology, 9, 721. https://doi.org/10.3389/fimmu.2018.00721
dc.identifier.citedreferenceKean, T. J., Lin, P., Caplan, A. I., & Dennis, J. E. ( 2013 ). MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells International, 2013, 732742. https://doi.org/10.1155/2013/732742
dc.identifier.citedreferenceKumar, B., Garcia, M., Weng, L., Jung, X., Murakami, J. L., Hu, X., McDonald, T., Lin, A., Kumar, A. R., DiGiusto, D. L., Stein, A. S., Pullarkat, V. A., Hui, S. K., Carlesso, N., Kuo, Y.-H., Bhatia, R., Marcucci, G., & Chen, C.-C. ( 2018 ). Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia, 32, 575 – 587. https://doi.org/10.1038/leu.2017.259
dc.identifier.citedreferenceKuo, W. P., Tigges, J. C., Toxavidis, V., & Ghiran, I. ( 2017 ). Red blood cells: A source of extracellular vesicles. Methods in Molecular Biology, 1660, 15 – 22. https://doi.org/10.1007/978-1-4939-7253-1_2
dc.identifier.citedreferenceKuzmin, D. A., Shutova, M. V., Johnston, N. R., Smith, O. P., Fedorin, V. V., Kukushkin, Y. S., van der Loo, J. C. M., & Johnstone, E. C. ( 2021 ). The clinical landscape for AAV gene therapies. Nature Reviews Drug Discovery, 20, 173 – 174. https://doi.org/10.1038/d41573-021-00017-7
dc.identifier.citedreferenceLamichhane, T. N., Jeyaram, A., Patel, D. B., Parajuli, B., Livingston, N. K., Arumugasaamy, N., Schardt, J. S., & Jay, S. M. ( 2016 ). Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cellular and Molecular Bioengineering, 9, 315 – 324. https://doi.org/10.1007/s12195-016-0457-4
dc.identifier.citedreferenceLang, J. K., Young, R. F., Ashraf, H., & Canty, J. M. Jr. ( 2016 ). Inhibiting extracellular vesicle release from human cardiosphere derived cells with lentiviral knockdown of nSMase2 differentially effects proliferation and apoptosis in cardiomyocytes, fibroblasts and endothelial cells in vitro. PLoS One, 11, e0165926. https://doi.org/10.1371/journal.pone.0165926
dc.identifier.citedreferenceLawson, C., Vicencio, J. M., Yellon, D. M., & Davidson, S. M. ( 2016 ). Microvesicles and exosomes: New players in metabolic and cardiovascular disease. Journal of Endocrinology, 228, R57 – R71. https://doi.org/10.1530/JOE-15-0201
dc.identifier.citedreferenceLevy, O., Kuai, R., Siren, E. M. J., Bhere, D., Milton, Y., Nissar, N., De Biasio, M., Heinelt, M., Reeve, B., Abdi, R., Alturki, M., Fallatah, M., Almalik, A., Alhasan, A. H., Shah, K., & Karp, J. M. ( 2020 ). Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 6, eaba6884. https://doi.org/10.1126/sciadv.aba6884
dc.identifier.citedreferenceLi, S. P., Lin, Z. X., Jiang, X. Y., & Yu, X. Y. ( 2018 ). Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacologica Sinica, 39, 542 – 551. https://doi.org/10.1038/aps.2017.178
dc.identifier.citedreferenceLi, W., Reategui, E., Park, M. H., Castleberry, S., Deng, J. Z., Hsu, B., Mayner, S., Jensen, A. E., Sequist, L. V., Maheswaran, S., Haber, D. A., Toner, M., Stott, S. L., & Hammond, P. T. ( 2015 ). Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. Biomaterials, 65, 93 – 102. https://doi.org/10.1016/j.biomaterials.2015.06.036
dc.identifier.citedreferenceLi, Z., Zhao, P., Zhang, Y., Wang, J., Wang, C., Liu, Y., Yang, G., & Yuan, L. ( 2021 ). Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics, 11, 2953 – 2965. https://doi.org/10.7150/thno.49874
dc.identifier.citedreferenceLiu, B., Lee, B. W., Nakanishi, K., Villasante, A., Williamson, R., Metz, J., Kim, J., Kanai, M., Bi, L., Brown, K., Di Paolo, G., Homma, S., Sims, P. A., Topkara, V. K., & Vunjak-Novakovic, G. ( 2018 ). Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nature Biomedical Engineering, 2, 293 – 303. https://doi.org/10.1038/s41551-018-0229-7
dc.identifier.citedreferenceLiu, C., Zhang, W., Li, Y., Chang, J., Tian, F., Zhao, F., Ma, Y., & Sun, J. ( 2019 ). Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Letters, 19, 7836 – 7844. https://doi.org/10.1021/acs.nanolett.9b02841
dc.identifier.citedreferenceLiu, B., Wang, B., Zhang, X., Lock, R., Nash, T., & Vunjak-Novakovic, G. ( 2021 ). Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med, 13 ( 580 ), eabd0914. https://doi.org/10.1126/scitranslmed.abd0914
dc.identifier.citedreferenceLokugamage, M. P., Vanover, D., Beyersdorf, J., Hatit, M. Z. C., Rotolo, L., Echeverri, E. S., Peck, H. E., Ni, H., Yoon, J. K., Kim, Y., Santangelo, P. J., & Dahlman, J. E. ( 2021 ). Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nature Biomedical Engineering, 5, 1059 – 1068. https://doi.org/10.1038/s41551-021-00786-x
dc.identifier.citedreferenceMaiullari, F., Chirivi, M., Costantini, M., Ferretti, A. M., Recchia, S., Maiullari, S., Milan, M., Presutti, D., Pace, V., Raspa, M., Scavizzi, F., Massetti, M., Petrella, L., Fanelli, M., Rizzi, M., Fortunato, O., Moretti, F., Caradonna, E., Bearzi, C., & Rizzi, R. ( 2021 ). In vivo organized neovascularization induced by 3D bioprinted endothelial-derived extracellular vesicles. Biofabrication, 13, 035014. https://doi.org/10.1088/1758-5090/abdacf
dc.identifier.citedreferenceMarban, E. ( 2018 ). A mechanistic roadmap for the clinical application of cardiac cell therapies. Nature Biomedical Engineering, 2, 353 – 361. https://doi.org/10.1038/s41551-018-0216-z
dc.identifier.citedreferenceMaring, J. A., Beez, C. M., Falk, V., Seifert, M., & Stamm, C. ( 2017 ). Myocardial regeneration via progenitor cell-derived exosomes. Stem Cells International, 2017, 7849851. https://doi.org/10.1155/2017/7849851
dc.identifier.citedreferenceMaring, J. A., Lodder, K., Mol, E., Verhage, V., Wiesmeijer, K. C., Dingenouts, C. K. E., Moerkamp, A. T., Deddens, J. C., Vader, P., Smits, A. M., Sluijter, J. P. G., & Goumans, M. - J. ( 2019 ). Cardiac progenitor cell-derived extracellular vesicles reduce infarct size and associate with increased cardiovascular cell proliferation. Journal of Cardiovascular Translational Research, 12, 5 – 17. https://doi.org/10.1007/s12265-018-9842-9
dc.identifier.citedreferenceMathieu, M., Martin-Jaular, L., Lavieu, G., & Thery, C. ( 2019 ). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21, 9 – 17. https://doi.org/10.1038/s41556-018-0250-9
dc.identifier.citedreferenceMcGuire, M. J., Samli, K. N., Johnston, S. A., & Brown, K. C. ( 2004 ). In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo. Journal of Molecular Biology, 342, 171 – 182. https://doi.org/10.1016/j.jmb.2004.06.029
dc.identifier.citedreferenceMeng, W., He, C., Hao, Y., Wang, L., Li, L., & Zhu, G. ( 2020 ). Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Delivery, 27, 585 – 598. https://doi.org/10.1080/10717544.2020.1748758
dc.identifier.citedreferenceMentkowski, K. I., & Lang, J. K. ( 2019 ). Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Scientific Reports, 9, 10041. https://doi.org/10.1038/s41598-019-46407-1
dc.identifier.citedreferenceMentkowski, K. I., Snitzer, J. D., Rusnak, S., & Lang, J. K. ( 2018 ). Therapeutic potential of engineered extracellular vesicles. The Aaps Journal [Electronic Resource], 20, 50. https://doi.org/10.1208/s12248-018-0211-z
dc.identifier.citedreferenceMiraki-Moud, F., Anjos-Afonso, F., Hodby, K. A., Griessinger, E., Rosignoli, G., Lillington, D., Jia, L., Davies, J. K., Cavenagh, J., Smith, M., Oakervee, H., Agrawal, S., Gribben, J. G., Bonnet, D., & Taussig, D. C. ( 2013 ). Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. PNAS, 110, 13576 – 13581. https://doi.org/10.1073/pnas.1301891110
dc.identifier.citedreferenceMittelbrunn, M., & Sanchez-Madrid, F. ( 2012 ). Intercellular communication: Diverse structures for exchange of genetic information. Nature Reviews Molecular Cell Biology, 13, 328 – 335. https://doi.org/10.1038/nrm3335
dc.identifier.citedreferenceMol, E. A., Goumans, M. J., Doevendans, P. A., Sluijter, J. P. G., & Vader, P. ( 2017 ). Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine, 13, 2061 – 2065. https://doi.org/10.1016/j.nano.2017.03.011
dc.identifier.citedreferenceMunoz, J. L., Bliss, S. A., Greco, S. J., Ramkissoon, S. H., Ligon, K. L., & Rameshwar, P. ( 2013 ). Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Molecular Therapy Nucleic Acids, 2, e126. https://doi.org/10.1038/mtna.2013.60
dc.identifier.citedreferenceMurphy, D. E., de Jong, O. G., Brouwer, M., Wood, M. J., Lavieu, G., Schiffelers, R. M., & Vader, P. ( 2019 ). Extracellular vesicle-based therapeutics: Natural versus engineered targeting and trafficking. Experimental & Molecular Medicine, 51, 1 – 12. https://doi.org/10.1038/s12276-019-0223-5
dc.identifier.citedreferenceMyers, J. M., Cooper, L. T., Kem, D. C., Stavrakis, S., Kosanke, S. D., Shevach, E. M., Fairweather, D., Stoner, J. A., Cox, C. J., & Cunningham, M. W. ( 2016 ). Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight, 1. https://doi.org/10.1172/jci.insight.85851
dc.identifier.citedreferenceNagareddy, P. R., Murphy, A. J., Stirzaker, R. A., Hu, Y., Yu, S., Miller, R. G., Ramkhelawon, B., Distel, E., Westerterp, M., Huang, L. S., Schmidt, A. M., Orchard, T. J., Fisher, E. A., Tall, A. R., & Goldberg, I. J. ( 2013 ). Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metabolism, 17, 695 – 708. https://doi.org/10.1016/j.cmet.2013.04.001
dc.identifier.citedreferenceNguyen, M. A., Karunakaran, D., Geoffrion, M., Cheng, H. S., Tandoc, K., Perisic Matic, L., Hedin, U., Maegdefessel, L., Fish, J. E., & Rayner, K. J. ( 2018 ). Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 49 – 63. https://doi.org/10.1161/ATVBAHA.117.309795
dc.identifier.citedreferenceOlatunya, O. S., Lanaro, C., Longhini, A. L., Penteado, C. F. F., Fertrin, K. Y., Adekile, A., Saad, S. T. O., & Costa, F. F. ( 2019 ). Red blood cells microparticles are associated with hemolysis markers and may contribute to clinical events among sickle cell disease patients. Annal of Hematology, 98, 2507 – 2521. https://doi.org/10.1007/s00277-019-03792-x
dc.identifier.citedreferenceOliveira, G. P. Jr., Zigon, E., Rogers, G., Davodian, D., Lu, S., Jovanovic-Talisman, T., Jones, J., Tigges, J., Tyagi, S., & Ghiran, I. C. ( 2020 ). Detection of extracellular vesicle RNA using molecular beacons. iScience, 23, 100782. https://doi.org/10.1016/j.isci.2019.100782
dc.identifier.citedreferencePanda, B., Sharma, Y., Gupta, S., & Mohanty, S. ( 2021 ). Mesenchymal stem cell-derived exosomes as an emerging paradigm for regenerative therapy and nano-medicine: A comprehensive review. Life (Basel), 11 ( 8 ), 784. https://doi.org/10.3390/life11080784
dc.identifier.citedreferencePaunovska, K., Da Silva Sanchez, A. J., Sago, C. D., Gan, Z., Lokugamage, M. P., Islam, F. Z., Kalathoor, S., Krupczak, B. R., & Dahlman, J. E. ( 2019 ). Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Advanced Materials, 31, e1807748. https://doi.org/10.1002/adma.201807748
dc.identifier.citedreferencePaunovska, K., Sago, C. D., Monaco, C. M., Hudson, W. H., Castro, M. G., Rudoltz, T. G., Kalathoor, S., Vanover, D. A., Santangelo, P. J., Ahmed, R., Bryksin, A. V., & Dahlman, J. E. ( 2018 ). A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Letters, 18, 2148 – 2157. https://doi.org/10.1021/acs.nanolett.8b00432
dc.identifier.citedreferencePiffoux, M., Volatron, J., Cherukula, K., Aubertin, K., Wilhelm, C., Silva, A. K. A., & Gazeau, F. ( 2021 ). Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Advanced Drug Delivery Reviews, 178, 113972. https://doi.org/10.1016/j.addr.2021.113972
dc.identifier.citedreferencePittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. ( 2019 ). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine, 4, 22. https://doi.org/10.1038/s41536-019-0083-6
dc.identifier.citedreferencePittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. ( 1999 ). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143 – 147. https://doi.org/10.1126/science.284.5411.143
dc.identifier.citedreferenceQin, W., & Dallas, S. L. ( 2019 ). Exosomes and extracellular RNA in muscle and bone aging and crosstalk. Current Osteoporosis Reports, 17, 548 – 559. https://doi.org/10.1007/s11914-019-00537-7
dc.identifier.citedreferenceRankin-Turner, S., Vader, P., O’Driscoll, L., Giebel, B., Heaney, L. M., & Davies, O. G. ( 2021 ). A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Advanced Drug Delivery Reviews, 173, 479 – 491. https://doi.org/10.1016/j.addr.2021.04.012
dc.identifier.citedreferenceRaposo, G., & Stoorvogel, W. ( 2013 ). Extracellular vesicles: Exosomes, microvesicles, and friends. Journal of Cell Biology, 200, 373 – 383. https://doi.org/10.1083/jcb.201211138
dc.identifier.citedreferenceReategui, E., Aceto, N., Lim, E. J., Sullivan, J. P., Jensen, A. E., Zeinali, M., Martel, J. M., Aranyosi, A. J., Li, W., Castleberry, S., Bardia, A., Sequist, L. V., Haber, D. A., Maheswaran, S., Hammond, P. T., Toner, M., & Stott, S. L. ( 2015 ). Tunable nanostructured coating for the capture and selective release of viable circulating tumor cells. Advanced Materials, 27, 1593 – 1599. https://doi.org/10.1002/adma.201404677
dc.identifier.citedreferenceReategui, E., van der Vos, K. E., Lai, C. P., Zeinali, M., Atai, N. A., Aldikacti, B., Floyd, F. P. Jr., A, H. K., Thapar, V., Hochberg, F. H., Sequist, L. V., Nahed, B. V. S., Carter, B., Toner, M., Balaj, L. T., Ting, D., Breakefield, X. O., & Stott, S. L. ( 2018 ). Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nature Communications, 9, 175. https://doi.org/10.1038/s41467-017-02261-1
dc.identifier.citedreferenceRoefs, M. T., Sluijter, J. P. G., & Vader, P. ( 2020 ). Extracellular vesicle-associated proteins in tissue repair. Trends in Cell Biology, 30, 990 – 1013. https://doi.org/10.1016/j.tcb.2020.09.009
dc.identifier.citedreferenceRonaldson-Bouchard, K., Ma, S. P., Yeager, K., Chen, T., Song, L., Sirabella, D., Morikawa, K., Teles, D., Yazawa, M., & Vunjak-Novakovic, G. ( 2018 ). Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature, 556, 239 – 243. https://doi.org/10.1038/s41586-018-0016-3
dc.identifier.citedreferenceRonaldson-Bouchard, K., Teles, D., Yeager, K., Tavakol, D. N., Zhao, Y., Chramiec, A., Tagore, S., Summers, M., Stylianos, S., Tamargo, M., Lee, B. M., Halligan, S. P., Abaci, E. H., Guo, Z., Jacków, J., Pappalardo, A., Shih, J., Soni, R. K., Sonar, S., … Vunjak-Novakovic, G. ( 2022 ). A multi-organ chip with matured tissue niches linked by vascular flow. Nature Biomedical Engineering, 6, 351 – 371. https://doi.org/10.1038/s41551-022-00882-6
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.