Show simple item record

Dayside Temperature Maps of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From MAVEN IUVS Observations of O I 297.2 nm Emission

dc.contributor.authorEvans, J. S.
dc.contributor.authorSoto, E.
dc.contributor.authorJain, S. K.
dc.contributor.authorDeighan, J.
dc.contributor.authorStevens, M. H.
dc.contributor.authorChaffin, M. S.
dc.contributor.authorLo, D. Y.
dc.contributor.authorGupta, S.
dc.contributor.authorSchneider, N. M.
dc.contributor.authorCurry, S.
dc.date.accessioned2023-03-03T21:11:45Z
dc.date.available2024-03-03 16:11:40en
dc.date.available2023-03-03T21:11:45Z
dc.date.issued2023-02
dc.identifier.citationEvans, J. S.; Soto, E.; Jain, S. K.; Deighan, J.; Stevens, M. H.; Chaffin, M. S.; Lo, D. Y.; Gupta, S.; Schneider, N. M.; Curry, S. (2023). "Dayside Temperature Maps of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From MAVEN IUVS Observations of O I 297.2 nm Emission." Journal of Geophysical Research: Planets 128(2): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/175956
dc.description.abstractWe present temperature maps derived from number density retrievals of carbon dioxide (CO2) for the upper mesosphere and lower thermosphere of Mars using limb observations from the Imaging Ultraviolet Spectrograph (IUVS) aboard NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We retrieve CO2 densities using O(1S) metastable atoms that radiatively relax by emitting photons at 297.2 nm, producing a double-peaked emission profile detectable by IUVS. Retrieved CO2 densities are used to derive altitude profiles of temperature as a function of latitude, longitude, local time, season, dust activity, and solar activity. CO2 density and temperature profiles retrieved using the O I 297.2 nm emission feature presented herein extend previous IUVS retrievals from 130–170 km down to 80 km. We validate retrieved CO2 densities and derived temperatures using coincident measurements and corresponding data products produced by MAVEN IUVS, as available. Analysis of this comprehensive data set, which spans Mars years 32–36, shows (a) a consistently well-defined mesopause at approximately 120 km, (b) warming at high pressures (typically below ∼100 km) for a variety of geophysical conditions, (c) asymmetry in temperatures at dawn and dusk with respect to latitude during different seasons (warmer temperatures at dawn during northern hemisphere autumn/winter and cooler temperatures at dusk during spring/summer), and (d) longitudinal waves with a dominant wave-3 component in both the upper mesosphere and lower thermosphere, with lower (80–90 km) and upper (135–145 km) atmospheric waves about 65° out of phase.Plain Language SummaryWe show the first O I 297.2 nm emission-derived temperature profiles extending from 80 to 150 km in the atmosphere of Mars obtained from observations by the Imaging Ultraviolet Spectrograph onboard NASA’s Mars Atmosphere and Volatile EvolutioN spacecraft. This new analysis enables us to bridge the gap and improve our understanding of the coupling that occurs between the middle and upper atmospheres of Mars. Our analysis has revealed thermal variability in the Martian atmosphere with respect to latitude, longitude, local time, season, dust activity, and solar activity. As suggested by previous studies, waves generated in the lower atmosphere propagate to the upper atmosphere, coupling the atmospheric layers, and produce fluctuations in density (up to 40% locally) that can affect the background atmospheric temperature, which is a key parameter driving thermal escape of atomic hydrogen. The density and temperature data presented here provide an important but heretofore missing source of information that is needed to directly link weather and waves in the lower atmosphere to perturbations in composition and temperature in the upper atmosphere.Key PointsOur analysis reveals a consistently well-defined mesopause at approximately 120 kmWe observe an asymmetry in temperatures at dawn and dusk with respect to latitude during different seasonsLongitudinal waves with dominant wave-3 component are characterized in both the upper mesosphere and lower thermosphere
dc.publisherWiley Periodicals, Inc.
dc.publisherWorld Scientific
dc.titleDayside Temperature Maps of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From MAVEN IUVS Observations of O I 297.2 nm Emission
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175956/1/2022JE007325-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175956/2/jgre22117_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175956/3/jgre22117.pdf
dc.identifier.doi10.1029/2022JE007325
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceSnowden, D., Yelle, R., Cui, J., Wahlund, J.-E., Edberg, N., & Ågren, K. ( 2013 ). The thermal structure of Titan’s upper atmosphere, I: Temperature profiles from Cassini INMS observations. Icarus, 226 ( 1 ), 552 – 582. https://doi.org/10.1016/j.icarus.2013.06.006
dc.identifier.citedreferenceStarichenko, E. D., Belyaev, D. A., Medvedev, A. S., Fedorova, A. A., Korablev, O. I., Trokhimovskiy, A., et al. ( 2021 ). Gravity wave activity in the Martian atmosphere at altitudes 20–160 km from ACS/TGO occultation measurements. Earth and Space Science Open Archive, 20. https://doi.org/10.1002/essoar.10506561.2
dc.identifier.citedreferenceSteele, L. J., Kleinböhl, A., & Kass, D. M. ( 2021 ). Observations of ubiquitous nighttime temperature inversions in Mars’ tropics after large scale dust storms. Geophysics Research Letters, 48 ( 9 ), e92651. https://doi.org/10.1029/2021GL092651
dc.identifier.citedreferenceSteffl, A. J., Young, L. A., Strobel, D. F., Kammer, J. A., Evans, J. S., Stevens, M. H., et al. ( 2020 ). Pluto’s ultraviolet spectrum, surface reflectance, and airglow emissions. The Astronomical Journal, 159 ( 6 ), 274. https://doi.org/10.3847/1538-3881/ab8d1c
dc.identifier.citedreferenceStevens, M. H., Evans, J. S., Lumpe, J., Westlake, J. H., Ajello, J. M., Bradley, E. T., & Esposito, L. W. ( 2015 ). Molecular nitrogen and methane density retrievals from Cassini UVIS dayglow observations of Titan’s upper atmosphere. Icarus, 247, 301 – 312. https://doi.org/10.1016/j.icarus.2014.10.008
dc.identifier.citedreferenceStevens, M. H., Evans, J. S., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., et al. ( 2015 ). New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 42 ( 21 ), 9050 – 9056. https://doi.org/10.1002/2015GL065319
dc.identifier.citedreferenceStevens, M. H., Gustin, J., Ajello, J. M., Evans, J. S., Meier, R., Kochenash, A. J., et al. ( 2011 ). The production of titan’s ultraviolet nitrogen airglow. Journal of Geophysical Research, 116 ( A5 ), A05304. https://doi.org/10.1029/2010ja016284
dc.identifier.citedreferenceStevens, M. H., Siskind, D. E., Evans, J. S., Jain, S. K., Schneider, N. M., Deighan, J., et al. ( 2017 ). Martian mesospheric cloud observations by IUVS on MAVEN: Thermal tides coupled to the upper atmosphere. Geophysical Research Letters, 44 ( 10 ), 4709 – 4715. https://doi.org/10.1002/2017GL072717
dc.identifier.citedreferenceStewart, A. I., Barth, C. A., Hord, C. W., & Lane, A. L. ( 1972 ). Mariner 9 ultraviolet spectrometer experiment: Structure of Mars’s upper atmosphere (A 5. 3). Icarus, 17 ( 2 ), 469 – 474. https://doi.org/10.1016/0019-1035(72)90012-7
dc.identifier.citedreferenceStiepen, A., Gérard, J.-C., Bougher, S., Montmessin, F., Hubert, B., & Bertaux, J.-L. ( 2015 ). Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars express. Icarus, 245, 295 – 305. https://doi.org/10.1016/j.icarus.2014.09.051
dc.identifier.citedreferenceStone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. ( 2018 ). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. Journal of Geophysical Research: Planets, 123 ( 11 ), 2842 – 2867. https://doi.org/10.1029/2018je005559
dc.identifier.citedreferenceStone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. ( 2022 ). Neutral composition and horizontal variations of the Martian upper atmosphere from MAVEN NGIMS. Journal of Geophysical Research: Planets, 127 ( 6 ), e07085. https://doi.org/10.1029/2021JE007085
dc.identifier.citedreferenceStone, S. W., Yelle, R. V., Benna, M., Lo, D. Y., Elrod, M. K., & Mahaffy, P. R. ( 2020 ). Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370 ( 6518 ), 824 – 831. https://doi.org/10.1126/science.aba5229
dc.identifier.citedreferenceStrickland, D., Bishop, J., Evans, J., Majeed, T., Shen, P., Cox, R., et al. ( 1999 ). Atmospheric ultraviolet radiance integrated code (auric): Theory, software architecture, inputs, and selected results. Journal of Quantitative Spectroscopy and Radiative Transfer, 62 ( 6 ), 689 – 742. https://doi.org/10.1016/s0022-4073(98)00098-3
dc.identifier.citedreferenceThaller, S. A., Andersson, L., Pilinski, M. D., Thiemann, E., Withers, P., Elrod, M., et al. ( 2020 ). Tidal wave-driven variability in the Mars ionosphere-thermosphere system. Atmosphere, 11 ( 5 ), 521. https://doi.org/10.3390/atmos11050521
dc.identifier.citedreferenceThiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. ( 2017 ). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2748 – 2767. https://doi.org/10.1002/2016JA023512
dc.identifier.citedreferenceThiemann, E. M. B., Eparvier, F. G., Bougher, S. W., Dominique, M., Andersson, L., Girazian, Z., et al. ( 2018 ). Mars thermospheric variability revealed by MAVEN EUVM solar occultations: Structure at aphelion and perihelion and response to EUV forcing. Journal of Geophysical Research: Planets, 123 ( 9 ), 2248 – 2269. https://doi.org/10.1029/2018JE005550
dc.identifier.citedreferenceVandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., et al. ( 2019 ). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568 ( 7753 ), 521 – 525. https://doi.org/10.1038/s41586-019-1097-3
dc.identifier.citedreferenceVenot, O., Bénilan, Y., Fray, N., Gazeau, M.-C., Lefèvre, F., Es-sebbar, E., et al. ( 2018 ). Vuv-absorption cross section of carbon dioxide from 150 to 800 k and applications to warm exoplanetary atmospheres. Astronomy & Astrophysics, 609, A34.
dc.identifier.citedreferenceViggiano, A. A., Ehlerding, A., Hellberg, F., Thomas, R. D., Zhaunerchyk, V., Geppert, W. D., et al. ( 2005 ). Rate constants and branching ratios for the dissociative recombination of CO2+. The Journal of Chemical Physics, 122 ( 22 ), 226101. https://doi.org/10.1063/1.1926283
dc.identifier.citedreferenceWithers, P., Bougher, S. W., & Keating, G. M. ( 2003 ). The effects of topographically-controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer. Icarus, 164 ( 1 ), 14 – 32. https://doi.org/10.1016/S0019-1035(03)00135-0
dc.identifier.citedreferenceWolkenberg, P., Giuranna, M., Smith, M. Â. D., Grassi, D., & Amoroso, M. ( 2020 ). Similarities and differences of global dust storms in MY 25, 28, and 34. Journal of Geophysical Research (Planets), 125 ( 3 ), e06104. https://doi.org/10.1029/2019JE006104
dc.identifier.citedreferenceYiğit, E. ( 2021 ). Martian water escape and internal waves. Science, 374 ( 6573 ), 1323 – 1324. https://doi.org/10.1126/science.abg5893
dc.identifier.citedreferenceYiǧit, E., Medvedev, A. S., Benna, M., & Jakosky, B. M. ( 2021 ). Dust storm enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implication for atmospheric escape. Geophysical Research Letters, 48 ( 5 ), e92095. https://doi.org/10.1029/2020GL092095
dc.identifier.citedreferenceYiğit, E., Medvedev, A. S., & Hartogh, P. ( 2018 ). Influence of gravity waves on the climatology of high-altitude Martian carbon dioxide ice clouds. Annales Geophysicae, 36 ( 6 ), 1631 – 1646. https://doi.org/10.5194/angeo-36-1631-2018
dc.identifier.citedreferenceZurek, R., Tolson, R., Bougher, S., Lugo, R., Baird, D., Bell, J., & Jakosky, B. ( 2017 ). Mars thermosphere as seen in maven accelerometer data. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 3798 – 3814. https://doi.org/10.1002/2016ja023641
dc.identifier.citedreferenceAlge, E., Adams, N., & Smith, D. ( 1983 ). Measurements of the dissociative recombination coefficients of O2+, NO+ and NH4+ in the temperature range 200–600k. Journal of Physics B: Atomic and Molecular Physics, 16 ( 8 ), 1433 – 1444. https://doi.org/10.1088/0022-3700/16/8/017
dc.identifier.citedreferenceAoki, S., Gkouvelis, L., Gérard, J.-C., Soret, L., Hubert, B., Lopez-Valverde, M., et al. ( 2022 ). Density and temperature of the upper mesosphere and lower thermosphere of Mars retrieved from the OI 557.7 nm dayglow measured by TGO/NOMAD. Journal of Geophysical Research: Planets, 127 ( 6 ), e2022JE007206. https://doi.org/10.1029/2022je007206
dc.identifier.citedreferenceAoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. ( 2019 ). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124 ( 12 ), 3482 – 3497. https://doi.org/10.1029/2019JE006109
dc.identifier.citedreferenceAvakyan, S., Ii’In, R., Lavrov, V., & Ogurtsov, G. ( 1998 ). Collision processes and excitation of UV emission from planetary atmospheric gases: A handbook of cross sections.
dc.identifier.citedreferenceBishop, J., & Feldman, P. D. ( 2003 ). Analysis of the Astro-1/Hopkins ultraviolet telescope EUV-FUV dayside nadir spectral radiance measurements. Journal of Geophysical Research, 108 ( A6 ), 1243. https://doi.org/10.1029/2001JA000330
dc.identifier.citedreferenceBishop, J., Stevens, M. H., & Feldman, P. D. ( 2007 ). Molecular nitrogen Carroll-Yoshino v’ = 0 emission in the thermospheric dayglow as seen by the far ultraviolet spectroscopic explorer. Journal of Geophysical Research, 112 ( A10 ), A10312. https://doi.org/10.1029/2007JA012389
dc.identifier.citedreferenceBougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., et al. ( 2017 ). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 1296 – 1313. https://doi.org/10.1002/2016ja023454
dc.identifier.citedreferenceCapetanakis, F., Sondermann, F., Höser, S., & Stuhl, F. ( 1993 ). Temperature dependence of the quenching of o (1 s) by simple inorganic molecules. The Journal of Chemical Physics, 98 ( 10 ), 7883 – 7887. https://doi.org/10.1063/1.464596
dc.identifier.citedreferenceChaffin, M., Deighan, J., Schneider, N., & Stewart, A. ( 2017 ). Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nature Geoscience, 10 ( 3 ), 174 – 178. https://doi.org/10.1038/ngeo2887
dc.identifier.citedreferenceConnour, K., Wolff, M. J., Schneider, N. M., Deighan, J., Lefèvre, F., & Jain, S. K. ( 2022 ). Another one derives the dust: Ultraviolet dust aerosol properties retrieved from MAVEN/IUVS data. Icarus, 387, 115177. https://doi.org/10.1016/j.icarus.2022.115177
dc.identifier.citedreferenceDamian, V., Sandu, A., Damian, M., Potra, F., & Carmichael, G. R. ( 2002 ). The kinetic preprocessor kpp-a software environment for solving chemical kinetics. Computers & Chemical Engineering, 26 ( 11 ), 1567 – 1579. https://doi.org/10.1016/s0098-1354(02)00128-x
dc.identifier.citedreferenceDeighan, J. ( 2018a ). MAVEN IUVS derived-level data product bundle [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1518956
dc.identifier.citedreferenceDeighan, J. ( 2018b ). MAVEN IUVS processed-level data product bundle [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1518964
dc.identifier.citedreferenceEngland, S. L., Liu, G., Kumar, A., Mahaffy, P. R., Elrod, M., Benna, M., et al. ( 2019 ). Atmospheric tides at high latitudes in the Martian upper atmosphere observed by MAVEN and MRO. Journal of Geophysical Research: Space Physics, 124 ( 4 ), 2943 – 2953. https://doi.org/10.1029/2019JA026601
dc.identifier.citedreferenceEparvier, F. ( 2017 ). MAVEN extreme ultraviolet (EUV) modelled data bundle [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1414173
dc.identifier.citedreferenceEvans, J., Correira, J., Deighan, J., Jain, S., Al Matroushi, H., Al Mazmi, H., et al. ( 2022 ). Retrieval of co relative column abundance in the Martian thermosphere from FUV disk observations by EMM emus. Geophysical Research Letters, 49 ( 18 ), e2022GL099615. https://doi.org/10.1029/2022gl099615
dc.identifier.citedreferenceEvans, J., Lumpe, J., Correira, J., Veibell, V., Kyrwonos, A., McClintock, W., et al. ( 2020 ). Neutral exospheric temperatures from the gold mission. Journal of Geophysical Research: Space Physics, 125 ( 9 ), e2020JA027814. https://doi.org/10.1029/2020ja027814
dc.identifier.citedreferenceEvans, J., Soto, E., Jain, S. K., Deighan, J., Stevens, M. H., Chaffin, M. S., et al. ( 2023 ). Dayside temperature maps of the upper mesosphere and lower thermosphere of Mars retrieved from MAVEN IUVS observations of O I 297.2 nm emission [Dataset]. University of Colorado Boulder. https://doi.org/10.25810/1BKN-BS85
dc.identifier.citedreferenceEvans, J. S., Stevens, M. H., Lumpe, J. D., Schneider, N. M., Stewart, A. I. F., Deighan, J., et al. ( 2015 ). Retrieval of CO2 and N2 in the Martian thermos p here u s ing dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 42 ( 21 ), 9040 – 9049. https://doi.org/10.1002/2015GL065489
dc.identifier.citedreferenceFedorova, A. A., Montmessin, F., Korablev, O., Luginin, M., Trokhimovskiy, A., Belyaev, D. A., et al. ( 2020 ). Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 367 ( 6475 ), 297 – 300. https://doi.org/10.1126/science.aay9522
dc.identifier.citedreferenceFehsenfeld, F., Dunkin, D., & Ferguson, E. E. ( 1970 ). Rate constants for the reaction of CO2+ with O, O2 and NO; N2+ with O and NO; and O2+ with NO. Planetary and Space Science, 18 ( 8 ), 1267 – 1269. https://doi.org/10.1016/0032-0633(70)90216-3
dc.identifier.citedreferenceForbes, J. M., Lemoine, F. G., Bruinsma, S. L., Smith, M. D., & Zhang, X. ( 2008 ). Solar flux variability of Mars’ exosphere densities and temperatures. Geophysics Research Letters, 35 ( 1 ), L01201. https://doi.org/10.1029/2007GL031904
dc.identifier.citedreferenceForget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24155 – 24175. https://doi.org/10.1029/1999je001025
dc.identifier.citedreferenceForget, F., Montmessin, F., Bertaux, J.-L., González-Galindo, F., Lebonnois, S., Quémerais, E., et al. ( 2009 ). Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 114 ( E1 ), E01004. https://doi.org/10.1029/2008JE003086
dc.identifier.citedreferenceFox, J. L., Benna, M., McFadden, J. P., & Jakosky, B. M. ( 2021 ). Rate coefficients for the reactions of CO2+ with O: Lessons from maven at Mars. Icarus, 358, 114186. https://doi.org/10.1016/j.icarus.2020.114186
dc.identifier.citedreferenceFox, J. L., & Dalgarno, A. ( 1979 ). Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84 ( A12 ), 7315 – 7333. https://doi.org/10.1029/JA084iA12p07315
dc.identifier.citedreferenceFox, J. L., & Sung, K. ( 2001 ). Solar activity variations of the Venus thermosphere/ionosphere. Journal of Geophysical Research, 106 ( A10 ), 21305 – 21335. https://doi.org/10.1029/2001ja000069
dc.identifier.citedreferenceGarcia, R. R., & Solomon, S. ( 1985 ). The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. Journal of Geophysics Research, 90 ( D2 ), 3850 – 3868. https://doi.org/10.1029/JD090iD02p03850
dc.identifier.citedreferenceGérard, J.-C., Aoki, S., Willame, Y., Gkouvelis, L., Depiesse, C., Thomas, I., et al. ( 2020 ). Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 4 ( 11 ), 1049 – 1052. https://doi.org/10.1038/s41550-020-1123-2
dc.identifier.citedreferenceGkouvelis, L., Gérard, J.-C., Ritter, B., Hubert, B., Schneider, N. M., & Jain, S. K. ( 2018 ). The O(1S) 297.2-nm dayglow emission: A tracer of CO2 density variations in the Martian lower thermosphere. Journal of Geophysical Research: Planets, 123 ( 12 ), 3119 – 3132. https://doi.org/10.1029/2018JE005709
dc.identifier.citedreferenceGonzález-Galindo, F., Jiménez-Monferrer, S., López-Valverde, M. Á., García-Comas, M., & Forget, F. ( 2021 ). On the derivation of thermospheric temperatures from dayglow emissions on Mars. Icarus, 358, 114284. https://doi.org/10.1016/j.icarus.2020.114284
dc.identifier.citedreferenceGonzález-Galindo, F., López-Valverde, M. A., Forget, F., García-Comas, M., Millour, E., & Montabone, L. ( 2015 ). Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research: Planets, 120 ( 11 ), 2020 – 2035. https://doi.org/10.1002/2015JE004925
dc.identifier.citedreferenceGröller, H., Montmessin, F., Yelle, R. V., Lefèvre, F., Forget, F., Schneider, N. M., et al. ( 2018 ). MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. Journal of Geophysical Research: Planets, 123 ( 6 ), 1449 – 1483. https://doi.org/10.1029/2017JE005466
dc.identifier.citedreferenceGröller, H., Yelle, R. V., Koskinen, T. T., Montmessin, F., Lacombe, G., Schneider, N. M., et al. ( 2015 ). Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophysical Research Letters, 42 ( 21 ), 9064 – 9070. https://doi.org/10.1002/2015GL065294
dc.identifier.citedreferenceGronoff, G., Simon Wedlund, C., Mertens, C. J., Barthélemy, M., Lillis, R. J., & Witasse, O. ( 2012 ). Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. Journal of Geophysical Research, 117 ( A5 ), A05309. https://doi.org/10.1029/2011JA017308
dc.identifier.citedreferenceGupta, N., Venkateswara Rao, N., & Kadhane, U. R. ( 2019 ). Dawn-dusk asymmetries in the Martian upper atmosphere. Journal of Geophysical Research: Planets, 124 ( 12 ), 3219 – 3230. https://doi.org/10.1029/2019JE006151
dc.identifier.citedreferenceHuestis, D. L., Slanger, T. G., Sharpee, B. D., & Fox, J. L. ( 2010 ). Chemical origins of the Mars ultraviolet dayglow. Faraday Discussions, 147, 307. https://doi.org/10.1039/c003456h
dc.identifier.citedreferenceJain, S. K. ( 2013 ). Dayglow emissions on Mars and Venus (Doctoral dissertation). Retrieved from http://dyuthi.cusat.ac.in/purl/3688
dc.identifier.citedreferenceJain, S. K., Bougher, S. W., Deighan, J., Schneider, N. M., González Galindo, F., Stewart, A. I. F., et al. ( 2020 ). Martian thermospheric warming associated with the planet encircling dust event of 2018. Geophysical Research Letters, 47 ( 3 ), e85302. https://doi.org/10.1029/2019GL085302
dc.identifier.citedreferenceJain, S. K., Soto, E., Evans, J., Deighan, J., Schneider, N., & Bougher, S. ( 2021 ). Thermal structure of Mars’ middle and upper atmospheres: Understanding the impacts of dynamics and solar forcing. Icarus, 114703. https://doi.org/10.1016/j.icarus.2021.114703
dc.identifier.citedreferenceJain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., et al. ( 2015 ). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 42 ( 21 ), 9023 – 9030. https://doi.org/10.1002/2015GL065419
dc.identifier.citedreferenceKeating, G. M., Bougher, S. W., Zurek, R. W., Tolson, R. H., Cancro, G. J., Noll, S. N., et al. ( 1998 ). The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars global surveyor. Science, 279 ( 5357 ), 1672 – 1676. https://doi.org/10.1126/science.279.5357.1672
dc.identifier.citedreferenceKella, D., Vejby-Christensen, L., Johnson, P., Pedersen, H., & Andersen, L. ( 1997 ). The source of green light emission determined from a heavy-ion storage ring experiment. Science, 276 ( 5318 ), 1530 – 1533. https://doi.org/10.1126/science.276.5318.1530
dc.identifier.citedreferenceKrauss, M., & Neumann, D. ( 1975 ). On the interaction of O (1s) with O (3p). Chemical Physics Letters, 36 ( 3 ), 372 – 374. https://doi.org/10.1016/0009-2614(75)80259-4
dc.identifier.citedreferenceLaher, R. R., & Gilmore, F. R. ( 1990 ). Updated excitation and ionization cross sections for electron impact on atomic oxygen. Journal of Physical and Chemical Reference Data, 19 ( 1 ), 277 – 305. https://doi.org/10.1063/1.555872
dc.identifier.citedreferenceLeblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., & Bertaux, J. L. ( 2006 ). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111 ( E9 ), E09S11. https://doi.org/10.1029/2005JE002664
dc.identifier.citedreferenceLeClair, L. R., & McConkey, J. ( 1993 ). Selective detection of o (1 s 0) following electron impact dissociation of O2 and N2O using a xeo* conversion technique. The Journal of Chemical Physics, 99 ( 6 ), 4566 – 4577. https://doi.org/10.1063/1.466056
dc.identifier.citedreferenceLink, R. ( 1992 ). Feautrier solution of the electron transport equation. Journal of Geophysical Research, 97 ( A1 ), 159 – 169. https://doi.org/10.1029/91ja02214
dc.identifier.citedreferenceLo, D. Y., Yelle, R. V., Schneider, N. M., Jain, S. K., Stewart, A. I. F., England, S. L., et al. ( 2015 ). Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS. Geophysical Research Letters, 42 ( 21 ), 9057 – 9063. https://doi.org/10.1002/2015GL066268
dc.identifier.citedreferenceLumpe, J. D., Bevilacqua, R. M., Hoppel, K. W., Krigman, S. S., Kriebel, D. L., Debrestian, D. J., et al. ( 1997 ). POAM II retrieval algorithm and error analysis. Journal of Geophysical Research, 102 ( D19 ), 23593 – 23614. https://doi.org/10.1029/97JD00906
dc.identifier.citedreferenceLumpe, J. D., Bevilacqua, R. M., Hoppel, K. W., & Randall, C. E. ( 2002 ). POAM III retrieval algorithm and error analysis. Journal of Geophysical Research, 107 ( D21 ), 4575 – ACH5-32. https://doi.org/10.1029/2002JD002137
dc.identifier.citedreferenceLumpe, J. D., Floyd, L. E., Herring, L. C., Gibson, S. T., & Lewis, B. R. ( 2007 ). Measurements of thermospheric molecular oxygen from the solar ultraviolet spectral irradiance monitor. Journal of Geophysical Research, 112 ( D16 ), 16308. https://doi.org/10.1029/2006JD008076
dc.identifier.citedreferenceMahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., & Jakosky, B. M. ( 2015 ). Structure and composition of the neutral upper atmosphere of Mars from the maven NGIMS investigation. Geophysical Research Letters, 42 ( 21 ), 8951 – 8957. https://doi.org/10.1002/2015gl065329
dc.identifier.citedreferenceMajeed, T., & Strickland, D. J. ( 1997 ). New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations. Journal of Physical and Chemical Reference Data, 26 ( 2 ), 335 – 349. https://doi.org/10.1063/1.556008
dc.identifier.citedreferenceMcCleese, D. J., Schofield, J. T., Taylor, F. W., Abdou, W. A., Aharonson, O., Banfield, D., et al. ( 2008 ). Intense polar temperature inversion in the middle atmosphere on Mars. Nature Geoscience, 1 ( 11 ), 745 – 749. https://doi.org/10.1038/ngeo332
dc.identifier.citedreferenceMcClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., et al. ( 2015 ). The imaging ultraviolet spectrograph (IUVS) for the MAVEN Mission. Space Science Reviews, 195 ( 1–4 ), 75 – 124. https://doi.org/10.1007/s11214-014-0098-7
dc.identifier.citedreferenceMedvedev, A. S., Nakagawa, H., Mockel, C., Yiǧit, E., Kuroda, T., Hartogh, P., et al. ( 2016 ). Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 43 ( 7 ), 3095 – 3104. https://doi.org/10.1002/2016GL068388
dc.identifier.citedreferenceMeier, R., & Picone, J. ( 1994 ). Retrieval of absolute thermospheric concentrations from the far UV dayglow: An application of discrete inverse theory. Journal of Geophysical Research, 99 ( A4 ), 6307 – 6320. https://doi.org/10.1029/93ja02775
dc.identifier.citedreferenceMeier, R., Picone, J., Drob, D., Bishop, J., Emmert, J., Lean, J., et al. ( 2015 ). Remote sensing of Earth’s limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature. Earth and Space Science, 2 ( 1 ), 1 – 37. https://doi.org/10.1002/2014ea000035
dc.identifier.citedreferenceMillour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., & Montabone, L. ( 2018 ). Mars climate database. From Mars express to ExoMars (Vol. 68 ).
dc.identifier.citedreferenceNakagawa, H., Jain, S. K., Schneider, N. M., Montmessin, F., Yelle, R. V., Jiang, F., et al. ( 2020 ). A warm layer in the nightside mesosphere of Mars. Geophysical Research Letters, 47 ( 4 ), e85646. https://doi.org/10.1029/2019GL085646
dc.identifier.citedreferenceNakagawa, H., Terada, N., Jain, S. K., Schneider, N. M., Montmessin, F., Yelle, R. V., et al. ( 2020 ). Vertical propagation of wave perturbations in the middle atmosphere on Mars by MAVEN/IUVS. Journal of Geophysical Research: Planets, 125 ( 9 ), e06481. https://doi.org/10.1029/2020JE006481
dc.identifier.citedreferenceNeary, L., Daerden, F., Aoki, S., Whiteway, J., Clancy, R. T., Smith, M., et al. ( 2020 ). Explanation for the increase in high-altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophysical Research Letters, 47 ( 7 ), e84354. https://doi.org/10.1029/2019GL084354
dc.identifier.citedreferencePeterson, W., Thiemann, E. B., Eparvier, F. G., Andersson, L., Fowler, C., Larson, D., et al. ( 2016 ). Photoelectrons and solar ionizing radiation at Mars: Predictions versus maven observations. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8859 – 8870. https://doi.org/10.1002/2016ja022677
dc.identifier.citedreferencePicone, J. ( 2008 ). Influence of systematic error on least squares retrieval of upper atmospheric parameters from the ultraviolet airglow. Journal of Geophysical Research, 113 ( A9 ), A09306. https://doi.org/10.1029/2007ja012831
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding. World Scientific. https://doi.org/10.1142/3171
dc.identifier.citedreferenceShirai, T., Tabata, T., & Tawara, H. ( 2001 ). Analytic cross sections for electron collisions with co, co2, and h2o relevant to edge plasma impurities. Atomic Data and Nuclear Data Tables, 79 ( 1 ), 143 – 184. https://doi.org/10.1006/adnd.2001.0866
dc.identifier.citedreferenceSimon, C., Witasse, O., Leblanc, F., Gronoff, G., & Bertaux, J. L. ( 2009 ). Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planetary and Space Science, 57 ( 8–9 ), 1008 – 1021. https://doi.org/10.1016/j.pss.2008.08.012
dc.identifier.citedreferenceSlanger, T., & Black, G. ( 1981 ). Quenching of 0 (’s) by 02 (a’a,). Geophysical Research Letters, 8 ( 5 ), 535 – 538. https://doi.org/10.1029/gl008i005p00535
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.