Show simple item record

Double Paddle-Wheel Enhanced Sodium Ion Conduction in an Antiperovskite Solid Electrolyte

dc.contributor.authorTsai, Ping-Chun
dc.contributor.authorMair, Sunil
dc.contributor.authorSmith, Jeffrey
dc.contributor.authorHalat, David M.
dc.contributor.authorChien, Po-Hsiu
dc.contributor.authorKim, Kwangnam
dc.contributor.authorZhang, Duhan
dc.contributor.authorLi, Yiliang
dc.contributor.authorYin, Liang
dc.contributor.authorLiu, Jue
dc.contributor.authorLapidus, Saul H.
dc.contributor.authorReimer, Jeffrey A.
dc.contributor.authorBalsara, Nitash P.
dc.contributor.authorSiegel, Donald J.
dc.contributor.authorChiang, Yet-Ming
dc.date.accessioned2023-03-03T21:11:51Z
dc.date.available2024-03-03 16:11:49en
dc.date.available2023-03-03T21:11:51Z
dc.date.issued2023-02
dc.identifier.citationTsai, Ping-Chun ; Mair, Sunil; Smith, Jeffrey; Halat, David M.; Chien, Po-Hsiu ; Kim, Kwangnam; Zhang, Duhan; Li, Yiliang; Yin, Liang; Liu, Jue; Lapidus, Saul H.; Reimer, Jeffrey A.; Balsara, Nitash P.; Siegel, Donald J.; Chiang, Yet-Ming (2023). "Double Paddle- Wheel Enhanced Sodium Ion Conduction in an Antiperovskite Solid Electrolyte." Advanced Energy Materials 13(7): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/175958
dc.description.abstractAntiperovskite structure compounds (X3AB, where X is an alkali cation and A and B are anions) have the potential for highly correlated motion between the cation and a cluster anion on the A or B site. This so-called “paddle-wheel” mechanism may be the basis for enhanced cation mobility in solid electrolytes. Through combined experiments and modeling, the first instance of a double paddle-wheel mechanism, leading to fast sodium ion conduction in the antiperovskite Na3−xO1−x(NH2)x(BH4), is shown. As the concentration of amide (NH2−) cluster anions is increased, large positive deviations in ionic conductivity above that predicted from a vacancy diffusion model are observed. Using electrochemical impedance spectroscopy, powder X-ray diffraction, synchrotron X-ray diffraction, neutron diffraction, ab initio molecular dynamics simulations, and NMR, the cluster anion rotational dynamics are characterized and it is found that cation mobility is influenced by the rotation of both NH2− and BH4− species, resulting in sodium ion conductivity a factor of 102 higher at x = 1 than expected for the vacancy mechanism alone. Generalization of this phenomenon to other compounds could accelerate fast ion conductor exploration and design.An antiperovskite sodium ion conductor is shown to benefit from a double paddle-wheel effect whereby the translation of the sodium cation is aided by the rotation of two distinct cluster anions.
dc.publisherJohn Wiley & Sons
dc.subject.othersolid-state electrolytes
dc.subject.otheranion dynamics
dc.subject.otherpaddle-wheel effect
dc.titleDouble Paddle-Wheel Enhanced Sodium Ion Conduction in an Antiperovskite Solid Electrolyte
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175958/1/aenm202203284_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175958/2/aenm202203284-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175958/3/aenm202203284.pdf
dc.identifier.doi10.1002/aenm.202203284
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceT.-L. Pham, A. Samad, H. J. Kim, Y.-H. Shin, J. Appl. Phys. 2018, 124, 164106.
dc.identifier.citedreferenceF. Wang, H. A. Evans, K. Kim, L. Yin, Y. Li, P.-C. Tsai, J. Liu, S. H. Lapidus, C. M. Brown, D. J. Siegel, Y.-M. Chiang, Chem. Mater. 2020, 32, 8481.
dc.identifier.citedreferenceZ. Deng, M. Ou, J. Wan, S. Li, Y. Li, Y. Zhang, Z. Deng, J. Xu, Y. Qiu, Y. Liu, C. Fang, Q. Li, L. Huang, J. Zhu, S. Han, J. Han, Y. Zhao, Chem. Mater. 2020, 32, 8827.
dc.identifier.citedreferenceT. Ikeshoji, E. Tsuchida, T. Morishita, K. Ikeda, M. Matsuo, Y. Kawazoe, S.-I. Orimo, Phys. Rev. B 2011, 83, 144301.
dc.identifier.citedreferenceN. Verdal, T. J. Udovic, V. Stavila, W. S. Tang, J. J. Rush, A. V. Skripov, J. Phys. Chem. C 2014, 118, 17483.
dc.identifier.citedreferenceT. J. Udovic, M. Matsuo, W. S. Tang, H. Wu, V. Stavila, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, J. J. Rush, A. Unemoto, H. Takamura, S.-i. Orimo, Adv. Mater. 2014, 26, 7622.
dc.identifier.citedreferenceW. S. Tang, M. Dimitrievska, V. Stavila, W. Zhou, H. Wu, A. A. Talin, T. J. Udovic, Chem. Mater. 2017, 29, 10496.
dc.identifier.citedreferenceD. Sveinbjörnsson, J. S. G. Myrdal, D. Blanchard, J. J. Bentzen, T. Hirata, M. B. Mogensen, P. Norby, S.-I. Orimo, T. Vegge, J. Phys. Chem. C 2013, 117, 3249.
dc.identifier.citedreferenceP. A. Chater, P. A. Anderson, J. W. Prendergast, A. Walton, V. S. J. Mann, D. Book, W. I. F. David, S. R. Johnson, P. P. Edwards, J. Alloys Compd. 2007, 446–447, 350.
dc.identifier.citedreferenceM. Somer, S. Acar, C. Koz, I. Kokal, P. Höhn, R. Cardoso-Gil, U. Aydemir, L. Akselrud, J. Alloys Compd. 2010, 491, 98.
dc.identifier.citedreferenceM. Matsuo, S. Kuromoto, T. Sato, H. Oguchi, H. Takamura, S.-I. Orimo, Appl. Phys. Lett. 2012, 100, 203904.
dc.identifier.citedreferenceA. V. Soloninin, O. A. Babanova, E. Y. Medvedev, A. V. Skripov, M. Matsuo, S.-i. Orimo, J. Phys. Chem. C 2014, 118, 14805.
dc.identifier.citedreferenceE. Ahiavi, J. A. Dawson, U. Kudu, M. Courty, M. S. Islam, O. Clemens, C. Masquelier, T. Famprikis, J. Power Sources 2020, 471, 228489.
dc.identifier.citedreferenceD. Wilmer, K. Funke, M. Witschas, R. Banhatti, M. Jansen, G. Korus, J. Fitter, R. Lechner, Phys. B 1999, 266, 60.
dc.identifier.citedreferenceN. Bloembergen, Phys. Rev. 1956, 104, 1542.
dc.identifier.citedreferenceS. Indris, P. Heitjans, R. Uecker, B. Roling, J. Phys. Chem. C 2012, 116, 14243.
dc.identifier.citedreferenceA. P. M. Kentgens, Geoderma 1997, 80, 271.
dc.identifier.citedreferenceC. Ammann, P. Meier, A. Merbach, J. Magn. Reson. 1982, 46, 319.
dc.identifier.citedreferenceS. Ikeda, J. M. Carpenter, Nucl. Instrum. Methods Phys. Res., Sect. A 1985, 239, 536.
dc.identifier.citedreferenceJ. Liu, Z. Du, X. Wang, S. Tan, X. Wu, L. Geng, B. Song, P.-H. Chien, S. M. Everett, E. Hu, Energy Environ. Sci. 2021, 14, 6441.
dc.identifier.citedreferenceA. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004.
dc.identifier.citedreferenceK. Momma, T. Ikeda, A. A. Belik, F. Izumi, Powder Diffr. 2013, 28, 184.
dc.identifier.citedreferenceV. Petˇr´ıˇcek, M. Duˇsek, L. Palatinus, Z. Kristallogr. – Cryst. Mater. 2014, 229, 345.
dc.identifier.citedreferenceK. Momma, F. Izumi, J. Appl. Crystallogr. 2008, 41, 653.
dc.identifier.citedreferenceG. Kresse, J. FurthmÜller, Phys. Rev. B 1996, 54, 11169,.
dc.identifier.citedreferenceP. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceH. M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B 1998, 57, 14690.
dc.identifier.citedreferenceP. P. Man, In: Encyclopedia of Analytical Chemistry, a6111, (Ed.: R. A. Meyers ), John Wiley & Sons, Ltd, Chichester, UK, 2006, https://onlinelibrary.wiley.com/doi/10.1002/9780470027318.a6111
dc.identifier.citedreferenceP. Pyykkö, Mol. Phys. 2008, 106, 1965.
dc.identifier.citedreferenceM. Parrinello, A. Rahman, Phys. Rev. Lett. 1980, 45, 1196.
dc.identifier.citedreferenceM. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.
dc.identifier.citedreferenceY. Wang, Q. Wang, Z. Liu, Z. Zhou, S. Li, J. Zhu, R. Zou, Y. Wang, J. Lin, Y. Zhao, J. Power Sources 2015, 293, 735.
dc.identifier.citedreferenceY. Sun, Y. Wang, X. Liang, Y. Xia, L. Peng, H. Jia, H. Li, L. Bai, J. Feng, H. Jiang, J. Xie, J. Am. Chem. Soc. 2019, 141, 5640.
dc.identifier.citedreferenceJ. G. Smith, D. J. Siegel, Nat. Commun. 2020, 11, 1483.
dc.identifier.citedreferenceI. Hanghofer, B. Gadermaier, H. M. R. Wilkening, Chem. Mater. 2019, 31, 4591.
dc.identifier.citedreferenceJ. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
dc.identifier.citedreferenceM. A. Laguna-Bercero, J. Power Sources 2012, 203, 4.
dc.identifier.citedreferenceN. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Prog. Mater. Sci. 2015, 72, 141.
dc.identifier.citedreferenceR. Ayers, J. Ind. Ecol. 1997, 1, 81.
dc.identifier.citedreferenceH. Kvande, P. A. Drabløs, J. Occup. Environ. Med. 2014, 56, S23.
dc.identifier.citedreferenceP. Knauth, Solid State Ionics 2009, 180, 911.
dc.identifier.citedreferenceJ. Janek, W. G. Zeier, Nat. Energy 2016, 1, 16141.
dc.identifier.citedreferenceJ. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10.
dc.identifier.citedreferenceA. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
dc.identifier.citedreferenceK. L. Gering, Electrochim. Acta 2017, 225, 175.
dc.identifier.citedreferenceN. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 2011, 10, 682.
dc.identifier.citedreferenceX. He, Y. Zhu, Y. Mo, Nat. Commun. 2017, 8, 15893
dc.identifier.citedreferenceJ. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 2016, 116, 140.
dc.identifier.citedreferenceZ. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L. F. Nazar, C.-W. Nan, J. Maier, M. Armand, L. Chen, Energy Environ. Sci. 2018, 11, 1945.
dc.identifier.citedreferenceZ. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi, M. Avdeev, Y.-S. Hu, D. Wang, B. He, H. Li, X. Huang, L. F. Nazar, L. Chen, Adv. Energy Mater. 2019, 9, 1902373.
dc.identifier.citedreferenceY. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Nat. Mater. 2015, 14, 1026.
dc.identifier.citedreferenceM. A. Kraft, S. P. Culver, M. Calderon, F. Böcher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, W. G. Zeier, J. Am. Chem. Soc. 2017, 139, 10909.
dc.identifier.citedreferenceT. Krauskopf, C. Pompe, M. A. Kraft, W. G. Zeier, Chem. Mater. 2017, 29, 8859.
dc.identifier.citedreferenceE. P. Ramos, Z. Zhang, A. Assoud, K. Kaup, F. Lalère, L. F. Nazar, Chem. Mater. 2018, 30, 7413.
dc.identifier.citedreferenceR. Schlem, S. Muy, N. Prinz, A. Banik, Y. Shao-Horn, M. Zobel, W. G. Zeier, Adv. Energy Mater. 2020, 10, 1903719.
dc.identifier.citedreferenceZ. Zhang, L. F. Nazar, Nat. Rev. Mater. 2022, 7, 389.
dc.identifier.citedreferenceM. Jansen, Angew. Chem., Int. Ed. Engl. 1991, 30, 1547.
dc.identifier.citedreferenceL. Karlsson, R. L. McGreevy, Solid State Ionics 1995, 76, 301.
dc.identifier.citedreferenceT. Famprikis, J. A. Dawson, F. Fauth, O. Clemens, E. Suard, B. Fleutot, M. Courty, J.-N. Chotard, M. S. Islam, C. Masquelier, ACS Mater. Lett. 2019, 1, 641.
dc.identifier.citedreferenceZ. Zhang, P.-N. Roy, H. Li, M. Avdeev, L. F. Nazar, J. Am. Chem. Soc. 2019, 141, 19360.
dc.identifier.citedreferenceZ. Zhang, H. Li, K. Kaup, L. Zhou, P.-N. Roy, L. F. Nazar, Matter 2020, 2, 1667.
dc.identifier.citedreferenceA.-Y. Song, K. Turcheniuk, J. Leisen, Y. Xiao, L. Meda, O. Borodin, G. Yushin, Adv. Energy Mater. 2020, 10, 1903480.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.