Show simple item record

Magnetic resonance studies of intercalated, two-dimensional transition metal chalcogenophosphate lattices

dc.contributor.authorSibley, Scott P.en_US
dc.contributor.authorFrancis, Anthony H.en_US
dc.contributor.authorLifshitz, E.en_US
dc.contributor.authorClement, Reneen_US
dc.date.accessioned2006-05-10T15:42:10Z
dc.date.available2006-05-10T15:42:10Z
dc.date.issued1994-02-25en_US
dc.identifier.citationSibley, S. P., Francis, A. H., Lifshitz, E., Clement, Rene (1994/02/25)."Magnetic resonance studies of intercalated, two-dimensional transition metal chalcogenophosphate lattices." Colloids and Surfaces A: Physicochemical and Engineering Aspects 82(3): 205-215. <http://hdl.handle.net/2027.42/31764>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TFR-44CRH9N-G/2/c08130593ee17545f1551434fcd049a8en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/31764
dc.description.abstractTransition metal chalcogenophosphates with the formula M2P2X6 (where M is a divalent transition metal and X = S, Se) form a family of compounds with layered structures that offer chemically accessible interlamellar spaces and the ability, unique among metal chalcogenides, to intercalate cations via an exchange mechanism. Electron paramagnetic resonance (EPR) spectroscopy was employed to study the exchange of lattice metal ions with intercalate ions and to examine the dynamic behaviour of the solvent-intercalate complex, as well as the coordination geometry and oxidation state of various intercalate cations. Both EPR and optically detected magnetic resonance (ODMR) spectroscopy were used to characterize lattice vacancies arising from displacement of the metal cations from their regular positions to interstitial spaces.en_US
dc.format.extent35227 bytes
dc.format.extent3118 bytes
dc.format.extent938477 bytes
dc.format.mimetypetext/plain
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.titleMagnetic resonance studies of intercalated, two-dimensional transition metal chalcogenophosphate latticesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, Univesity of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, Univesity of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherChemistry Department and Solid State Institute, Technion, Haifa 32000, Israelen_US
dc.contributor.affiliationotherLaboratoire de Chimie Inorganique, C.N.R.S. U.R.A. 420, Université Paris Sud, 91405 Orsay Cedex, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/31764/3/0000705.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0927-7757(93)02622-Len_US
dc.identifier.sourceColloids and Surfaces A: Physicochemical and Engineering Aspectsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.