Show simple item record

Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers

dc.contributor.authorGoodson, Kenneth E.en_US
dc.contributor.authorUma, S.en_US
dc.contributor.authorMcConnell, A. D.en_US
dc.contributor.authorAsheghi, M.en_US
dc.contributor.authorKurabayashi, Katsuoen_US
dc.date.accessioned2006-09-11T14:59:20Z
dc.date.available2006-09-11T14:59:20Z
dc.date.issued2001-03en_US
dc.identifier.citationUma, S.; McConnell, A. D.; Asheghi, M.; Kurabayashi, K.; Goodson, K. E.; (2001). "Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers." International Journal of Thermophysics 22(2): 605-616. <http://hdl.handle.net/2027.42/44568>en_US
dc.identifier.issn0195-928Xen_US
dc.identifier.issn1572-9567en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/44568
dc.description.abstractPolycrystalline silicon is used in microelectronic and microelectromechanical devices for which thermal design is important. This work measures the in-plane thermal conductivities of free-standing undoped polycrystalline layers between 20 and 300 K. The layers have a thickness of 1 μm, and the measurements are performed using steady-state Joule heating and electrical-resistance thermometry in patterned aluminum microbridges. The layer thermal conductivities are found to depend strongly on the details of the deposition process through the grain size distribution, which is investigated using atomic force microscopy and transmission electron microscopy. The room-temperature thermal conductivity of as-grown polycrystalline silicon is found to be 13.8 W·m -1 ·K -1 and that of amorphous recrystallized polycrystalline silicon is 22 W·m -1 ·K -1 , which is almost an order of magnitude less than that of single-crystal silicon. The maximum thermal conductivities of both samples occur at higher temperatures than in pure single-crystalline silicon layers of the same thickness. The data are interpreted using the approximate solution to the Boltzmann transport equation in the relaxation time approximation together with Matthiessen's rule. These measurements contribute to the understanding of the relative importance of phonon scattering on grain and layer boundaries in polysilicon films and provide data relevant for the design of micromachined structures.en_US
dc.format.extent266167 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers-Plenum Publishers; Plenum Publishing Corporation ; Springer Science+Business Mediaen_US
dc.subject.otherPhysical Chemistryen_US
dc.subject.otherGrain Boundary Scatteringen_US
dc.subject.otherMechanicsen_US
dc.subject.otherPhysicsen_US
dc.subject.otherIndustrial Chemistry/Chemical Engineeringen_US
dc.subject.otherCondensed Matteren_US
dc.subject.otherPolycrystalline Siliconen_US
dc.subject.otherPhonon Scatteringen_US
dc.subject.otherThermal Conductivityen_US
dc.titleTemperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMechanical Engineering and Applied Mechanics Department, University of Michigan, Ann Arbor, Michigan, 48109, U.S.Aen_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Stanford University, Stanford, California, 94305-3030, U.S.Aen_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Stanford University, Stanford, California, 94305-3030, U.S.Aen_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Stanford University, Stanford, California, 94305-3030, U.S.Aen_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Stanford University, Stanford, California, 94305-3030, U.S.Aen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/44568/1/10765_2004_Article_297892.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1023/A:1010791302387en_US
dc.identifier.sourceInternational Journal of Thermophysicsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.