Show simple item record

Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals

dc.contributor.authorBoyd, John P.en_US
dc.date.accessioned2006-09-11T15:31:32Z
dc.date.available2006-09-11T15:31:32Z
dc.date.issued1987-06en_US
dc.identifier.citationBoyd, John P.; (1987). "Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals." Journal of Scientific Computing 2(2): 99-109. <http://hdl.handle.net/2027.42/44981>en_US
dc.identifier.issn0885-7474en_US
dc.identifier.issn1573-7691en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/44981
dc.description.abstractThe Clenshaw-Curtis method for numerical integration is extended to semi-infinite ([0, ∞] and infinite [-&#x221E;, ∞] intervals. The common framework for both these extensions and for integration on a finite interval is to (1) map the integration domain to l ε [0, π ], (2) compute a Fourier sine or cosine approximation to the transformd integrand via interpolation, and (3) integrate the approximation. The interpolation is most easily performed via the sine or cosine cardinal functions, which are discussed in the appendix. The algorithm is mathematically equivalent to expanding the integrand in (mapped or unmapped) Chebyshev polynomials as done by Clenshaw and Curtis, but the trigonometric approach simplifies the mechanics. Like Gaussian quadrature, the error for the change-of-coordinates Fourier method decreases exponentially with N , the number of grid points, but the generalized Curtis-Clenshaw algorithm is much easier to program than Gaussian quadrature because the abscissas and weights are given by simple, explicit formulas.en_US
dc.format.extent462757 bytes
dc.format.extent3115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherKluwer Academic Publishers-Plenum Publishers; Plenum Publishing Corporation ; Springer Science+Business Mediaen_US
dc.subject.otherRational Chebyshev Functionsen_US
dc.subject.otherAppl.Mathematics/Computational Methods of Engineeringen_US
dc.subject.otherAlgorithmsen_US
dc.subject.otherMathematicsen_US
dc.subject.otherComputational Mathematics and Numerical Analysisen_US
dc.subject.otherMathematical and Computational Physicsen_US
dc.subject.otherQuadratureen_US
dc.subject.otherAdaptive Quadratureen_US
dc.subject.otherNumerical Integrationen_US
dc.titleExponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervalsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbsecondlevelEducationen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric and Oceanic Science, University of Michigan, 48109, Ann Arbor, Michiganen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/44981/1/10915_2005_Article_BF01061480.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1007/BF01061480en_US
dc.identifier.sourceJournal of Scientific Computingen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.