Show simple item record

Quantum Optical Implementation of Quantum Information Processing and Classical Simulation of Many-Body Physics from Quantum Information Perspective.

dc.contributor.authorWang, Binen_US
dc.date.accessioned2009-02-05T19:30:24Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-02-05T19:30:24Z
dc.date.issued2008en_US
dc.date.submitted2008en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/61688
dc.description.abstractThis thesis is composed of two parts. In the first part we summarize our study on implementation of quantum information processing (QIP) in optical cavity QED systems, while in the second part we present our numerical investigations on strongly interacting Fermi systems using a powerful numerical algorithm developed from the perspective of quantum information theory. We explore various possible applications of cavity QED in the strong coupling regime to quantum information processing tasks theoretically, including efficient preparation of Schrodinger-cat states for traveling photon pulses, robust implemen- tation of conditional quantum gates on neutral atoms, as well as implementation of a hybrid controlled SWAP gate. We analyze the feasibility and performance of our schemes by solving corresponding physical models either numerically or analytically. We implement a novel numerical algorithm called Time Evolving Block Decimation (TEBD), which was proposed by Vidal from the perspective of quantum information science. With this algorithm, we numerically study the ground state properties of strongly interacting fermions in an anisotropic optical lattice across a wide Feshbach resonance. The interactions in this system can be described by a general Hubbard model with particle assisted tunneling. For systems with equal spin population, we find that the Luther-Emery phase, which has been known to exist only for attractive on-site interactions in the conventional Hubbard model, could also be found even in the case with repulsive on-site interactions in the general Hubbard model. Using the TEBD algorithm, we also study the effect of particle assisted tun- neling in spin-polarized systems. Fermi systems with unequal spin population and attractive interaction could allow the existence of exotic superfluidity, such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. In the general Hubbard model, such exotic FFLO pairing of fermions could be suppressed by high particle assisted tunneling rates. However, at low particle assisted tunneling rates, the FFLO order could be enhanced. The effect of particle density inhomogeneity due to the presence of a harmonic trap potential is also discussed based on the local density approximation.en_US
dc.format.extent846832 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectQuantum Informationen_US
dc.subjectCavity QEDen_US
dc.subjectHubbard Modelen_US
dc.subjectClassical Simulationen_US
dc.subjectQuantum Many-body Physicsen_US
dc.titleQuantum Optical Implementation of Quantum Information Processing and Classical Simulation of Many-Body Physics from Quantum Information Perspective.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplinePhysicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberDuan, Lumingen_US
dc.contributor.committeememberBerman, Paul R.en_US
dc.contributor.committeememberRaithel, Georg A.en_US
dc.contributor.committeememberShi, Yaoyunen_US
dc.contributor.committeememberSteel, Duncan G.en_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/61688/1/binwz_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.