Show simple item record

A Computationally Efficient Method for Nonlinear Multihull Seakeeping.

dc.contributor.authorBelknap, William F.en_US
dc.date.accessioned2009-02-05T19:35:14Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2009-02-05T19:35:14Z
dc.date.issued2008en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/61750
dc.description.abstractA method for predicting the large amplitude motions of multihull vessels in a computationally efficient and robust manner has been developed and demonstrated. The present theory utilizes frequency domain hydrodynamic coefficients that include hull interactions in the radiation problem and a body-exact solution of the time-varying hydrostatic and Froude-Krylov forces in the time-domain. The theory and computational tool have been developed with a stated objective of supporting multihull design optimization, which requires extremely fast and stable computations that can accurately assess the seakeeping measure of merit in a relative sense. Higher fidelity tools can be used subsequent to a converged design to obtain a more accurate assessment of seakeeping performance. The contribution of this work to the general body of knowledge is in the development of a theory that captures hull interaction effects at lower ship speeds, where interaction effects are likely, while retaining the numerical efficiency of strip theory. A far-field approximation is invoked, whereby the radiated waves from one demi-hull appear as incident waves to another demi-hull. Comparisons of the present theory to model test data and 3D computations have shown fairly good agreement for some ship designs and, while capturing correct trends, relatively poor agreement for other ship designs. Agreement is generally better for multihulls that are long and slender with demi-hull separation greater than two times the demi-hull beam.en_US
dc.format.extent3700874 bytes
dc.format.extent1373 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.subjectSeakeepingen_US
dc.subjectMultihullen_US
dc.subjectMultihull Interactionsen_US
dc.subjectBlended Methoden_US
dc.titleA Computationally Efficient Method for Nonlinear Multihull Seakeeping.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineNaval Architecture & Marine Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBeck, Robert F.en_US
dc.contributor.committeememberEpureanu, Bogdan I.en_US
dc.contributor.committeememberParsons, Michael G.en_US
dc.contributor.committeememberTroesch, Armin W.en_US
dc.subject.hlbsecondlevelNaval Architecture and Marine Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/61750/1/wbelknap_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.